Физиологические и патологические формы гемоглобина. Патологические виды гемоглобина

Гемоглобин - это необходимый белок для жизнедеятельности человека, он выполняет ряд функций, основной из которых является транспортировка кислорода к клеткам и тканям. Существует несколько форм гемоглобина, каждая из которых обладает своими характеристиками.

Виды по белковому содержанию

В зависимости от белкового содержания формы гемоглобина человека бывают двух видов. Это физиологические и аномальные.

Формы гемоглобина физиологического типа возникают на определенных этапах жизнедеятельности человека. А вот патологические формируются в случае неправильной последовательности размещения ряда аминокислот в глобине.

Основные по формам

В человеческом организме могут присутствовать:

  1. Оксигемоглобин. Это вещество взаимодействует с молекулами кислорода. Присутствует в крови артерий, поэтому она и обладает насыщенно алым цветом.
  2. Карбоксигемоглобин. Эта разновидность белков взаимодействует с молекулами углекислого газа. Представленные молекулы проникают в ткани легких, где происходит выведение углекислого газа и насыщение кислорода гемоглобином. Эта разновидность белка присутствует в венозной крови, за счет чего она обладает более темным окрасом и большей густотой.
  3. Метгемоглобин. Это вещество, взаимодействующее с разнообразными химическими агентами. Патологическая форма гемоглобина, а увеличение количества этого вещества может указывать на отравление организма, происходит нарушение насыщаемости тканей кислородом.
  4. Миоглобин. Выступает в качестве полноценного аналога красных кровяных телец. Основное различие заключается только в том, что местом расположения этого белка являются сердечные мышцы. При повреждении мышц происходит попадание миоглобина в русло крови, после чего он выводится из организма благодаря функционированию почек. Но присутствует вероятность закупорки канальца почек, что может спровоцировать отмирание его тканей. В таких ситуациях не исключается возникновение почечной недостаточности и дефицита кислорода в тканях.

Другие виды гемоглобина

В различных информационных источниках выделяют еще и такие формы гемоглобина:

  1. Гликированный гемоглобин. Эта форма представляет собой неразделимое соединение глюкозы и белка. Такая разновидность глюкозы может перемещаться по крови на протяжении длительного времени, поэтому его применяют для выявления уровня сахара.
  2. Фетальный. Форма гемоглобина присутствует в крови эмбриона или новорожденного малыша в первые несколько дней жизнедеятельности. Причислен к активным видам в плане переноса кислорода, под воздействием окружающей среды подвергается быстрому разрушению.
  3. Сульфгемоглобин. Представленная разновидность белка возникает в крови при употреблении большого количества медикаментозных средств. Как правило, содержание этого белка не превышает 10 %.
  4. Дисгемоглобин. Формируется при таких связях, которые полностью лишают белок способности осуществлять его функции. Это указывает на то, что этот вид гемоглобина будет транспортироваться по крови в форме дополнительного вещества. По истечении времени он будет переработан селезенкой. При нормальном состоянии здоровья это вещество обнаруживается в организме каждого человека, но если случаи такого рода связок участятся, то органам, занимающимся транспортировкой крови по организму, придется функционировать с повышенной интенсивностью, в результате чего они быстрее истощатся и износятся.

Патологические формы гемоглобина

Выделяется отдельная группа:

  • D-Пенджаб;

Свое название форма гемоглобина D-Пенджаб получила благодаря широкому распространению на территории Пенджаба, в Индии и Пакистане. Возникновение белка произошло из-за распространения малярии в различных частях Азии. Согласно статистическим данным, этот белок обнаруживается в 55 % случаев от общего числа патологических форм гемоглобина.

Гемоглобин S сформировался на территории Западной Африки в результате пяти отдельных мутаций.

Белок C входит в число наиболее распространенных структурных разновидностей гемоглобина. Люди, у которых присутствует этот белок, могут страдать от такого заболевания, как гемолитическая анемия.

Гемоглобин H провоцирует развитие такого серьезного заболевания, как альфа-талассемия.

Главные функции

Независимо от форм и производных гемоглобина, это вещество обладает следующими функциями:

  1. Транспортировка кислорода. Во время вдыхания человеком воздушных масс происходит проникновение молекул кислорода в ткани легких, а оттуда они перемещаются к другим тканям и клеткам. Гемоглобин соединяет молекулы кислорода и осуществляет их транспортировку. При нарушении этой функции возникает дефицит кислорода, что очень опасно для функционирования мозга.
  2. Транспортировка углекислого газа. В этой ситуации гемоглобин связывает уже молекулы углекислого газа, а затем осуществляет их транспортировку.
  3. Поддержание уровня кислотности. При скоплении углекислого газа в крови наблюдается ее закисление. Этого категорически нельзя допускать, поскольку обязано происходить постоянное выведение молекул углекислого газа.

Нормальные показатели

Для того чтобы врачи могли определить нормальные формы гемоглобина в организме у человека, осуществляется сдача анализов.

Отмечают, что норма свободного гемоглобина в крови людей различных возрастов может иметь такие показатели:

  • мужчины в возрасте от 18 лет - от 120 до 150 г/л;
  • женщины в возрасте от 18 лет - от 110 до 130 г/л;
  • новорожденные и дети в возрасте до 18 лет - 200 г/л.

Увеличение или снижение количества свободного гемоглобина в крови может спровоцировать переход белка в другую форму - патологическую.

Отмечают ряд методов стабилизации его количества, поэтому если результаты анализов указывают на превышенный или сниженный показатель, нужно незамедлительно обращаться к доктору. В связи с наличием большой численности различных форм гемоглобина, определить присутствующую в организме в состоянии только профессиональный врач в лабораторных условиях. Обнаружение ее становится возможным при биохимическом анализе крови.

Гемограмма

Гемограмма (греч. haima кровь + gramma запись) – клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др.

Кровь для исследования берут через 1 ч после легкого завтраки из пальца (мочки уха или пятки у новорожденных и детей раннего возраста). Место прокола обрабатывают ватным тампоном, смоченным 70% этиловым спиртом. Прокол кожи проводят стандартным копьем-скарификатором разового пользования. Кровь должна вытекать свободно. Можно использовать кровь, взятую из вены.

При сгущении крови возможно увеличение концентраций гемоглобина, при увеличении объема плазмы крови – снижение.

Определение количества форменных элементов крови проводят в счетной камере Горяева. Высота камеры, площадь сетки и ее делений, разведение взятой для исследования крови позволяют установить количество форменных элементов в определенном объеме крови. Камера Горяева может быть заменена автоматическими счетчиками. Принцип их работы основан на различной электропроводности взвешенных частиц в жидкости.

Норма количества эритроцитов в 1 л крови

4,0–5,0×10 12

3,7–4,7×10 12

Уменьшение числа эритроцитов (эритроцитопения) характерно для анемий: увеличение их наблюдается при гипоксии, врожденных пороках сердца, сердечно-сосудистой недостаточности, эритремии и др.

Количество тромбоцитов подсчитывают различными методами (в мазках крови, в камере Горяева, при помощи автоматических счетчиков). У взрослых количество тромбоцитов составляет 180,0–320,0×10 9 /л. Увеличение числа тромбоцитов отмечается при злокачественных новообразованиях, хроническом миелолейкозе, остеомиелофиброзе и др. Пониженное содержание тромбоцитов может быть симптомом различных заболеваний, например тромбоцитопенической пурпуры. Наиболее часто в клинической практике встречаются иммунные тромбоцитопении. Количество ретикулоцитов подсчитывают в мазках крови или в камере Горяева. У взрослых их содержание составляет 2–10 ‰ .

Нормальное количество лейкоцитов у взрослых колеблется от 4,0 до 9,0×10 9 . У детей оно несколько больше. Содержание лейкоцитов ниже 4,0×10 9 обозначается термином «лейкопения», более 10,0×10 9 – термином «лейкоцитоз». Количество лейкоцитов у здорового человека не является постоянным и может значительно колебаться в течение суток (суточные биоритмы). Амплитуда колебаний зависит от возраста, пола, конституциональных особенностей, условий жизни, физической нагрузки и др. Развитие лейкопении обусловлено несколькими механизмами, например снижением продукции лейкоцитов костным мозгом, что имеет место при гипопластической и железодефицитной анемии. Лейкоцитоз обычно связан с увеличением количества нейтрофилов, чище обусловлен повышением продукции лейкоцитов или их перераспределением в сосудистом русле; наблюдается при многих состояниях организма, например, при эмоциональном или физическом напряжении, при ряде инфекционных болезней, интоксикациях и др. В норме лейкоциты крови взрослого человека представлены различными формами, которые распределяются в окрашенных препаратах в следующих соотношениях:

Определение количественного соотношения между отдельными формами лейкоцитов (лейкоцитарная формула) имеет клиническое значение. Наиболее часто наблюдается так называемый сдвиг в лейкоцитарной формуле влево. Он характеризуется появлением незрелых форм лейкоцитов (палочкоядерных, метамиелоцитов, миелоцитов, бластов и др.). Наблюдается при воспалительных процессах различной этиологии, лейкозах.

Морфологическую картину форменных элементов исследуют в окрашенных мазках крови под микроскопом. Существует несколько способов окраски мазков крови, основанных на химическом сродстве элементов клетки к определенным анилиновым краскам. Так, цитоплазматические включения метахроматически окрашиваются органическим красителем азуром в ярко-пурпурный цвет (азурофилия). В окрашенных мазках крови определяют величину лейкоцитов, лимфоцитов, эритроцитов (микроциты, макроциты и мегалоциты), их форму, окраску, например насыщенность эритроцита гемоглобином (цветной показатель), цвет цитоплазмы лейкоцитов, лимфоцитов. Низкий цветной показатель свидетельствует о гипохромии, он наблюдается при анемиях, обусловленных дефицитом железа в эритроцитах или неиспользованием его для синтеза гемоглобина. Высокий цветной показатель говорит о гиперхромии при анемиях, вызванных недостаточностью витамина В 12 и (или) фолиевой кислоты, гемолизом.

Скорость оседания эритроцитов (СОЭ) определяется методом Панченкова, основанным на свойстве эритроцитов оседать при помещении несвернувшейся крови в вертикально расположенную пипетку. СОЭ зависит от количества эритроцитов, их величины. Объема и способности к образованию агломератов, от температуры окружающей среды, количества белков плазмы крови и соотношения их фракций. Повышенная СОЭ может быть при инфекционных, иммунопатологических, воспалительных, некротических и опухолевых процессах. Наибольшее увеличение СОЭ наблюдается при синтезе патологического белка, что характерно для миеломной болезни, макроглобулинемии Вальденстрема, болезни легких и тяжелых цепей, а также при гиперфибриногенемии. Следует иметь в виду, что снижение содержания фибриногена в крови может компенсировать изменение соотношения альбуминов и глобулинов, вследствие чего СОЭ остается нормальной или замедляется. При острых инфекционных болезнях (например, при гриппе, ангине) наиболее высокая СОЭ возможна в период снижения температуры тела, при обратном развитии процесса. Значительно реже отмечается замедленная СОЭ, например при эритремии, вторичных эритроцитозах, повышении концентрации желчных кислот и желчных пигментов в крови, гемолизе, кровотечениях и др.

Об общем объеме эритроцитов дает представление гематокритное число – объемное соотношение форменных элементов крови и плазмы.

Нормальное гематокритное число

Его определяют с помощью гематокрита, представляющего собой два коротких стеклянных градуированных капилляра в специальной насадке. Гематокритное число зависит от объема эритроцитов в кровяном русле, вязкости крови, скорости кровотока и других факторов. Оно повышается при обезвоживании организма, тиреотоксикозе, сахарном диабете, кишечной непроходимости, беременности и др. Низкое гематокритное число наблюдается при кровотечениях, сердечной и почечной недостаточности, голодании, сепсисе.

Показатели гемограммы позволяют обычно ориентироваться в особенностях течения патологического процесса. Так, небольшой нейтрофильный лейкоцитоз возможен при легком течении инфекционных болезней и гнойных процессов; об утяжелении свидетельствует нейтрофильный гиперлейкоцитоз. Данные гемограммы используют для контроля за действием некоторых лекарственных препаратов. Так, регулярное определение содержания гемоглобина эритроцитов необходимо для установления режима приема препаратов железа у больных железодефицитной анемией, числа лейкоцитов и тромбоцитов – при лечении лейкозов цитостатическими препаратами.

Строение и функции гемоглобина

Гемоглобин – главный компонент эритроцита и основной дыхательный пигмент, обеспечивает перенос кислорода (О 2 ) из легких в ткани и углекислого газа (СО 2 ) из тканей в легкие. Кроме того, он играет существенную роль в поддержании кислотно-основного равновесия крови. Подсчитано, что в одном эритроците содержится ~340 000 000 молекул гемоглобина, каждая из которых состоит примерно из 103 атомов. В крови человека в среднем содержится ~750 г гемоглобина.

Гемоглобин представляет собой сложный белок, относящийся к группе гемопротеинов белковый компонент в котором представлен глобином, небелковый – четырьмя одинаковыми железопорфириновыми соединениями, которые называются гемами. Атом железа (II), расположенный в центре гема, придает крови характерный красный цвет (см. рис. 1 ). Наиболее характерным свойством гемоглобина является обратимое присоединение газовО 2 , СО 2 и др.

Рис. 1. Структура гемоглобина

Было установлено, что гем приобретает способность переносить О 2 лишь при условии, что его окружает и защищает специфический белок – глобин (сам по себе гем не связывает кислород). Обычно при соединенииО 2 с железом (Fe ) один или более электронов необратимо переходят с атомовFe на атомыО 2 . Иными словами, происходит химическая реакция. Экспериментально было доказано, что миоглобин и гемоглобин обладают уникальной способностью обратимо связыватьO 2 без окисления гемовогоFe 2+ в Fe 3+ .

Таким образом, процесс дыхания, который на первый взгляд кажется столь простым, на самом деле осуществляется благодаря взаимодействию многих видов атомов в гигантских молекулах чрезвычайной сложности.

В крови гемоглобин существует, по крайней мере, в четырех формах: оксигемоглобин, дезоксигемоглобин, карбоксигемоглобин, метгемоглобин. В эритроцитах молекулярные формы гемоглобина способны к взаимопревращению, их соотношение определено индивидуальными особенностями организма.

Как и любой другой белок, гемоглобин имеет определенный набор характеристик, по которым его можно отличить от других белковых и небелковых веществ в растворе. К таким характеристикам относятся молекулярная масса, аминокислотный состав, электрический заряд, химические свойства.

На практике чаще всего используются электролитные свойства гемоглобина (на этом основаны кондуктивные методы его исследования) и способность гема присоединять различные химические группы, приводящие к изменению валентности Fe и окраски раствора (калориметрические методы). Однако в многочисленных исследованиях показано, что результат кондуктивных методов определения гемоглобина зависит от электролитного состава крови, это делает затруднительным применение такого исследования в неотложной медицине.

Строение и функции костного мозга

Костный мозг (medulla ossium) – центральный орган кроветворения, расположенный в губчатом веществе костей и костно-мозговых полостях. Выполняет также функции биологической защиты организма и костеобразования.

У человека костный мозг (КМ) впервые появляется на 2-м месяце эмбриогенеза в закладке ключицы, на 3-м месяце – в лопатках, ребрах, грудине, позвонках и др. На 5-м месяце эмбриогенеза костный мозг функционирует как основной кроветворный орган, обеспечивая дифференцированное костномозговое кроветворение с элементами гранулоцитарного, эритроцитарного и мегакарциоцитарного рядов.

В организме взрослого человека различают красный КМ, представленный деятельной кроветворной тканью, и желтый, состоящий из жировых клеток. Красный КМ заполняет промежутки между костными перекладинами губчатого вещества плоских костей и эпифизов трубчатых костей. Он имеет темно-красный цвет и полужидкую консистенцию, состоит из стромы и клеток кроветворной ткани. Строма образована ретикулярной тканью, она представлена фибробластами и эндотелиальными клетками; содержит большое количество кровеносных сосудов, в основном широких тонкостенных синусоидных капилляров. Строма принимает участие в развитии и жизнедеятельности кости. В промежутках между структурами стромы находятся клетки, участвующие в процессах кроветворения стволовые клетки, клетки-предшественники, эритробласты, миелобласты, монобласты, мегакариобласты, промиелоциты, миелоциты, метамиелоциты, мегакариоциты, макрофаги и зрелые форменные элементы крови.

Формирующиеся клетки крови в красном КМ располагаются в виде островков. При этом эритробласты окружают макрофаг, содержащий железо, необходимое для построения геминовой части гемоглобина. В процессе созревания зернистые лейкоциты (гранулоциты) депонируются в красном КМ, поэтому их содержание в 3 раза больше, чем эритрокариоцитов. Мегакариоциты тесно связаны с синусоидными капиллярами; часть их цитоплазмы проникает в просвет кровеносного сосуда. Отделяющиеся фрагменты цитоплазмы в виде тромбоцитов переходят в кровяное русло. Формирующиеся лимфоциты плотно окружают кровеносные сосуды. В красном костном мозгу развиваются предшественники лимфоцитов и В-лимфоциты. В норме через стенку кровеносных сосудов КМ проникают только созревшие форменные элементы крови, поэтому появление в кровяном русле незрелых форм свидетельствует об изменении функции или повреждении костномозгового барьера. КМ занимает одно из первых мест в организме по своим репродуктивным свойствам. В среднем у человека в день образуется:

В детском возрасте (после 4 лет) красный КМ постепенно замещается жировыми клетками. К 25 годам диафизы трубчатых костей целиком заполняются желтым мозгом, в плоских костях он занимает около 50% объема КМ. Желтый КМ в норме не выполняет кроветворной функции, но при больших кровопотерях в нем появляются очаги кроветворения. С возрастом объем и масса КМ изменяются. Если у новорожденных на его долю приходится примерно 1,4% массы тела, то у взрослого человека – 4,6%.

Костный мозг участвует также в разрушении эритроцитов, реутилизации железа, синтезе гемоглобина, служит местом накопления резервных липидов. Поскольку в нем содержатся лимфоциты и мононуклеарные фагоциты, он принимает участие в реакции иммунного ответа.

Деятельность КМ как саморегулирующейся системы контролируется по принципу обратной связи (число зрелых клеток крови влияет на интенсивность их образования). Эта регуляция обеспечивается сложным комплексом межклеточных и гуморальных (поэтины, лимфокины и монокины) воздействий. Предполагается, что основным фактором, регулирующим клеточный гомеостаз, является количество клеток крови. В норме по мере старения клеток они удаляются и на их место приходят другие. При экстремальных состояниях (например, кровотечении, гемолизе) изменяется концентрация клеток, срабатывает обратная связь; в дальнейшем процесс зависит от динамической устойчивости системы и силы воздействия вредных факторов.

Под воздействием эндогенных и экзогенных факторов происходит нарушение кроветворной функции КМ. Нередко патологические изменения, происходящие в КМ, особенно в начале какого-либо заболевания, не сказываются на показателях, характеризующих состояние крови. Возможны уменьшение числа клеточных элементов КМ (гипоплазия) или их увеличение (гиперплазия). При гипоплазии КМ уменьшается количество миелокариоцитов, отмечается цитопения, нередко жировая ткань преобладает над миелоидной. Гипоплазия кроветворения может быть самостоятельным заболеванием (например, апластическая анемия). В редких случаях она сопровождает такие заболевания, как хронический гепатит, злокачественные новообразования, встречается при некоторых формах миелофиброза, мраморной болезни, аутоиммунных заболеваниях. При некоторых заболеваниях уменьшается количество клеток одного ряда, например красного (парциальная красноклеточная аплазия), или клеток гранулоцитарного ряда (агранулоцитоз). При ряде патологических состояний, кроме гипоплазии кроветворения, возможен неэффективный гемопоэз, для которого характерны нарушение созревания и выхода клеток гемопоэза в кровь и их интрамедуллярная гибель.

Гиперплазия КМ имеет место при различных лейкозах. Так, при остром лейкозе появляются незрелые (бластные) клетки; при хроническом лейкозе возрастает число морфологически зрелых клеток, например лимфоцитов при лимфолейкозе, эритроцитов при эритремии, гранулоцитов при хроническом миелолейкозе. Гиперплазия клеток эритроцитарного ряда характерна также для гемолитических анемий ,В 12 -дефицитной анемии .

Гемоглобин не связанный с кислородом называют: дезокси-гемоглобин, ферро-гемоглобин, восстановленный гемоглобин (Нв). Гемоглобин связанный с кислородом (восстановленный) – это окси-гемоглобин (НвО2). Угарный газ хорошо связывает гемоглобин – карбокси-гемоглобин (НвСО). MetНв – это окисленный гемоглобин, не соединяется ни с кислородом, ни с угарным газом, но легко образует комплексы с цианидами (используется при лечении).

Глобин взрослого человека представляет собой тетрамер (a2- и b2-цепи), соединяются цепи не ковалентными связями поочерёдно. В молекуле гемоглобина 4 полипептидных цепи и каждая из них содержит по одному гему. Значит, каждая молекула гемоглобина связывает 4 молекулы кислорода. Связь гемоглобина с кислородом осуществляется за счёт координационной связи между атомом железа и атомами азот-гистедина в полипептидной цепи. Гемовый карман – это расщелина между спиралями, куда встраивается Гем. Проксимальный гистедин в a-цепи – это 87 остаток, в b-цепи – это 92 остаток. Дистальный остаток гистедина в a-цепи – это 58, в b-цепи – 63. Связывание кислорода происходит только с восстановленным железом!

Гетерогенность гемоглобина связана с различием строения глобина:

1. Нормальные гемоглобины.

2. Аномальные гемоглобины – их наличие сопровождается каким либо заболеванием.

Гемоглобины начинают синтезироваться с 6й недели эмбриогенеза. Нормальные гемоглобины – это те гемоглобины, которые появляются в различные этапы жизни:

Эмбриональный гемоглобин (НвF) – существует в эмбриональном периоде жизни человека; имеет 2 a-цепи и 2 гамма-цепи. НвF имеет большее сродство к кислороду, чем НвА. Нормальный гемоглобин (НвА) – имеет 2 a-цепи и 2 b-цепи.

Минорные гемоглобины – это гемоглобины, которые в следовых количествах встречаются и у взрослых людей. Гемоглобин А2 имеет a-цепь и дельта-цепь, его содержание в крови 2-3%; появляется через 9-12 недель после рождения. Другие минорные гемоглобины – Нв1в и Нв1с; их состав: 2 a-цепи и 2 b-цепи – эти цепи модифицированные (эти гемоглобины образуются за счёт не ферментативного присоединения к N-концевым остаткам Валина b-цепей молекулы глюкоза-6-фосфата – его 6%). Нв1с образуется из Нв1в (его 1%).

Аномальные гемоглобины характеризуются недостатком функций гемоглобина и чаще всего – это генетически детерминированные мутации последовательностей аминокислотных цепей. В зависимости от проявления эти гемоглобины делятся:

1. Гемоглобины с изменённой растворимостью. Например, НвS или гемоглобин, вызывающий серповидно-клеточную анемию. У него в 6 положении b-цепи происходит замена АК: с Глутамина на Валин. Такое изменение АК-последовательности приводит к тому, что в дезокси-форме гемоглобин теряет растворимость, молекулы его агрегируют друг с другом, образуя нити и изменяя форму клетки. Лечение: категорическое запрещение тяжелой физической работы и лекарственная терапия.

2. Гемоглобины с изменённым сродством к кислороду – у них замены происходят в областях либо субъединичных контактов, либо в области гемового кармана. Например, НвМ – мутация a-цепи затрагивает остаток Гистидина (58 остаток) – происходит замена на остаток Тирозина. В результате происходит образование MetНв.


Гемоглобин (Нb) составляет около 95 % белка эритроцитов. Один эритроцит содержит 280 млн молекул гемоглобина. Hb относится к сложным белкам - хромопротеидам. В его состав входит железосодержащая простетическая группа — гем (4 %) и простой белок типа альбумина — глобин (96 %).
Молекула Hb - тетрамер, состоящий из 4 субъединиц - полипептидных цепей глобина (2 цепи α и 2 цепей β, γ, δ, ε, ζ в разных комбинациях), каждая из которых ковалентно связана с одной молекулой гема. Гем (небелковая пигментная группа) построен из 4 молекул пиррола, образующих порфириновое кольцо, в центре которого находится атом железа (Fe2+). Основная функция Hb - перенос O2.
Синтез Hb происходит на ранних стадиях развития эритробластов. Синтез глобина и гема протекает в эритроидных клетках независимо друг от друга. У всех видов животных гем одинаков; различия свойств Нb обусловливаются особенностями строения белковой части его молекулы, т. е. глобина.
У взрослого человека в норме в крови содержится три типа гемоглобина: НbА (96-98 %); НbА2 (2-3 %) и НbF (1-2 %). Глобин человека состоит из 574 остатков различных аминокислот, образующих четыре попарно одинаковые полипептидные цепи: две α-цепи — по 141 аминокислотному остатку и две β-цепи — по 146 остатков аминокислот. Общая формула молекулы гемоглобина человека — НbА-α2β2.
В состав НbА2 входят две α и две δ-цепи (α2δ2), а НbF — две α- и две γ-цепи (α2γ2). Синтез цепей гемоглобина обусловливается структурными генами, ответственными за каждую цепь, и генами-регуляторами, осуществляющими переключение синтеза одной цепи на синтез другой.
На ранних стадиях эмбриогенеза (с 19-го дня по 6-ю неделю) синтезируются в основном эмбриональные гемоглобины - HbP (Гоуэр1 (ξ2ε2), Гоуэр2 (α2ε2) и Портлад (ξ2γ2)).
В течение указанного времени кроветворение постепенно переключается с желточного мешка на печень. При этом выключается синтез ξ- и ε-цепей и включается синтез γ-, β-, δ-цепей. К 4-му месяцу эритроциты печеночного происхождения доминируют в циркулирующей крови и содержат фетальный гемоглобин (HbF).
Гемоглобины различаются по биохимическим, физико-химическим, иммунобиологическим свойствам. Так, НbF по сравнению с НbА более устойчив к щелочам, менее — к температурным влияниям, обладает более высоким сродством к кислороду и способен быстрее отдавать углекислоту. К моменту рождения имеются оба типа Нb (НbF и НbА). Затем «фетальный» Нb постепенно сменяется «взрослым». Иногда у взрослых может обнаруживаться минимальное (до 2 %) количество НbF, что не имеет патологического значения.
При мутациях в структурных генах, контролирующих синтез Нb, когда заменяются аминокислоты, в полипептидных цепях глобина образуются аномальные гемоглобины.
Известно более 400 аномальных Нb, для которых характерны нарушения первичной структуры той или иной полипептидной цепи НbА (гемоглобинопатии, или гемоглобинозы). Основными видами таких Hb являются:
- серповидно-клеточный гемоглобин (НbS) — возникает при замене глютаминовой кислоты на валин в β-цепи; в этом случае развивается серповидно-клеточная анемия;
- метгемоглобины (около 5 разновидностей) образуются, если гистидин заменяется на тирозин; в этом случае окисление Нb в метгемоглобин, постоянно происходящее в норме, становится необратимым.

Количество гемоглобина в крови является важным клиническим показателем дыхательной функции крови. Оно измеряется в граммах на литр крови:
Лошади - в среднем 80-140 г/л,
КРС - 90-120 г/л,
Свиньи - 90-110 г/л,
Овцы - 70-110 г/л,
Птицы - 80-130 г/л,
Пушные звери - 120-170 г/л,
Человек - 120-170 г/л.

Формы гемоглобина:
Оксигемоглобин - соединение с O2.
Карбогемоглобин (HbCO2) - соединение с CO2.
Метгемоглобин (MetHb) - Hb, содержащий Fe гема в трёхвалентной форме (Fe3+); не переносит О2. Образуется в результате воздействия на эритроциты сильных окислителей (нитраты, нитриты, парацетамол, никотин, сульфаниламиды, лидокаин).
Карбоксигемоглобин - соединение с CO.
Гликозилированный Hb - Hb, модифицированный ковалентным присоединением к нему глюкозы (норма 5,8-6,2%). К одним из первых признаков сахарного диабета относят увеличение в 2-3 раза количества гликозилированного Hb.
Солянокислый гематин - результат взаимодействия ферментов и соляной кислоты желудочного сока с Hb. Окрашивает дно эрозий и язв в коричневый цвет и придаёт рвотным массам при желудочном кровотечении вид «кофейной гущи».

Кристаллы гемоглобина у животных имеют видовые особенности, что используется для идентификации крови или её следов в судебной ветеринарии и медицине (солянокислый гематин в пробе Тейхмана).
Гемоглобин высоко токсичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.
Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. Например, особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.