Жидкости для антиоблединительной обработки самолетов. Путешествия и самолёты

Зима в этом году началась сурово - сначала подморозило, а теперь заваливает снегом. Условия - в самый раз для того, чтобы посмотреть как происходит деайсинг.

(Всего 22 фото + 1 видео)

Спонсор поста: Заправка картриджей – наша профессия. Довертесь профессионалам! Заправка картриджей Xerox от компании Тонгруп. Телефон: +38044-5373690. С нами Вы всегда будете спокойны за свою оргтехнику!Источник: Жжурнал/q-rex

После всех согласований для съёмки выбрали 10 число, поэтому после открытия перехода на Белорусской я, с пятиминутным заездом домой, помчался на Павелецкий вокзал.

О том, что я увидел в Домодедово и о том, как происходит процедура деайсинга - смотрите в этом репортаже.


1. Снегоочистительная техника работает круглосуточно. Жутковатые агрегаты с огромными ковшами и щётками сметают снег с рулёжных дорожек на лётном поле, а взлётные полосы поливаются реагентами. (по клику - 1600x730)

2. Если говорить техническим языком, то деайсинг (или, по-нашему, противообледенительная обработка воздушного судна) - это процедура очистки аэродинамических поверхностей от налипшего снега и образовавшегося инея и покрытие их защитным составом. Если по-простому - «поливают самолёт всякой гадостью».


3. О том, что бывает, если обработку не провести или провести неправильно - можно посмотреть вот в этой замечательной документалке . Можно ещё вспомнить крушение Як-40, в котором погиб Артём Боровик.

Попытаюсь объяснить популярно. Крылья и хвостовое оперение самолёта - особо сконструированные поверхности, форма которых идеально расчитана, чтобы обеспечивать полёт (за счёт разницы давления над и под поверхностью). Если образуется наледь или прилипает снег - форма меняется, аэродинамика ухудшается и самолёт уже не может «держаться за воздух» - появляется тенденция к сваливанию. Проще говоря, самолёт начинает падать.

Какие ещё неприятности могут случиться - попадание наледи с крыльев в двигатели, или, например, залепленные снегом датчики, считывающие скорость движения, которые в результате дают неверную/противоречивую информацию пилотам.

Всё это особо критично при взлёте и наборе высоты, поэтому основная часть сопутствующих лётных происшествий связана именно с этим этапом полёта.

4. Процедуру проводят, разумеется, не у самого трапа - там мало места, море аэродромной техники и люди ходят. Поэтому сначала производится посадка пассажиров на борт, и после этого начинается руление к открытой стоянке, где и будет проходить деайсинг.

5. Защитное покрытие действует около 15 минут, поэтому место выбирают так, чтобы после обработки не надо было далеко рулить до взлётки (например, если терминал в другом конце лётного поля).


6. Насколько я понял из своих наблюдений, иностранцы предпочитают поливать весь самолёт целиком, включая фюзеляж, а наши в основном ограничиваются аэродинамическими поверхностями. (по клику - 1600x805)

7. Деайсинг - одна из самых зрелищных процедур в авиации, особенно если речь идёт о лайнере-гиганте вроде этого Боинга-777 Сингапурских авиалиний.

8. Многие (как и я) будут наверное удивлены, узнав, что жидкостей на самом деле две: первой под большим напором смывают снег и наледь, а потом уже второй наносят защитное покрытие.

9. Если очищающая жидкость имеет еле заметный розоватый оттенок, то защитная - явный бирюзовый цвет, который превращает белые самолёты в подобие «огурцов» S7.


10. Кстати, о них. Второй самолёт, на примере которого мы будем смотреть обработку - . Посадка закончена, трап сложен и начинается руление к открытой площадке.

11. Приезжает машина с жидкостью, оператор садится в люльку и разворачивает шланг на телескопической «ноге».

12. Очищающая жидкость.

13. Защитная.

14. Потом машина объезжает самолёт и начинает обработку с другой стороны.

16. Обработка закончена - можно лететь!

18. Следующий «клиент» - Боинг-737 Трансаэро.

19. Ещё одним откровением для меня стало то, что жидкости бывают разных категорий и существуют различные запатентованные составы. В зависимости от погодных условий используются составы разных концентраций. А вообще деайсинг проводят даже летом - если залить полные баки холодного топлива, уже может образоваться наледь.

Также выяснилось, что никакой вредной химии там нет - если на человека случайно попадёт, то ничего страшного. Хотя и в том, чтобы оказаться политым горячим мыльным раствором, приятного тоже мало.

20. Чтобы не повредить дорогой самолёт и не отправить его вместо рейса на починку, подвижные части машины оборудованы специальными «усами» - специальными датчиками, которые при касании останавливают движение (кто знает как работает габаритный вагон в метро - поймёт о чём речь).

21. Машина называется «Elephant» - слон.

Если я правильно понял, то одна такая стоит порядка 1 миллиона долларов. Есть конечно и более экономичный вариант - техник садится в люльку, берёт шланг и поливает самолёт сам. Но в это не практикуется.

22. Всем приятного полёта!

23. Небольшое видео: обработка Б777 и А319.

Если вам когда-нибудь приходилось отправляться в путешествие на самолете в холодное время года, с высокой долей вероятности, взглянув в иллюминатор перед вылетом, вы могли заметить специальные машины, распыляющие противообледенительную жидкость на крылья. Пассажиры часто интересуются, почему так важно, чтобы самолет был очищен от снега и льда перед взлетом. Дело в том, что крыло и хвостовое оперение самолета имеют определенную форму, благодаря которой создается подъемная сила. Снег или лед изменяют профиль аэродинамических поверхностей, из-за чего нарушается их обтекание воздушным потоком, что влечет за собой значительную потерю подъемной силы. Кроме того, увеличивается вес самолета, что также влияет на безопасный взлет и набор высоты. В 2010 году в Тюмене произошла катастрофа самолета ATR-72. Расследование катастрофы показало, что непроведение противообледенительной обработки перед вылетом привело к потере скорости и сваливанию непосредственно после взлета.

Обтекание обледенелого крыла воздушным потоком.

Ни для кого не секрет, что облив – довольно дорогостоящая процедура, и многие авиакомпании раньше старались по возможности экономить на его проведении. На начало 2015 года средняя цена на обработку самолета А320 в российских аэропортах составляла около 10000 рублей без стоимости жидкости. Жидкость в зависимости от типа стоит от 100 до 150 рублей за литр. Как правило, на обработку самолета А320 уходит 200-300 литров, а при неблагоприятных метеоусловиях значительно больше.

После катастрофы в Тюмени отношение к противообледенительной обработке (сокращенно ПОО ) изменилось. Большинство российских перевозчиков ввели так называемую концепцию чистого воздушного судна, согласно которой, никто не имеет право выпускать самолет в рейс или предпринимать попытку взлета, если на его критических поверхностях имеются снег или лед.

К критическим поверхностям относятся крылья, включая механизацию крыла, хвостовое оперение, фюзеляж, гондолы и воздухозаборники двигателей.

Решение на проведение обработки самолета принимает командир совместно с техническим персоналом, при этом, если мнения о необходимости облива расходятся, обработка все равно производится.

Методы удаления обледенения.

Существует три метода очистки воздушного судна от снежно-ледяных отложений: механический , воздушно-тепловой и физико-химический .

Механический способ представляет собой ручную очистку поверхностей самолета на подобии очистки автомобиля. Это самый дешевый способ, однако ввиду большой трудоемкости и длительности процесса активно применяется лишь в военно-воздушных силах.

Воздушно тепловой способ подразумевает использование специальных обдувочных машин на основе реактивных двигателей. Данный способ был широко распространен в СССР, однако современные самолеты иностранного производства ввиду высокой вероятности повреждения обшивки так не обрабатывают.

Физико-химический способ представляет собой облив самолета специальной жидкостью, собственно этот способ является самым массовым, о нем и пойдет речь дальше. Для облива используются специальные машины, в зависимости от размера самолета варьируется и их количество.

Обработка самолета Ан-124 шестью машинами.

Противообледенительная жидкость.

Противообледенительная жидкость (сокращенно ПОЖ ) – как правило, это подогретая смесь гликоля и воды. В зависимости от условий применения и назначения обработки применяются различные виды жидкости в чистом виде или разведенные водой в той или иной пропорции.

Существует четыре типа ПОЖ :

  • Тип I : предназначен для удаления обледенения. В целях экономии может разбавляется водой. Практически не имеет защитного действия, так как в составе жидкости отсутствуют загустители;
  • Тип II : в состав жидкости входят загустители. Назначение — защита от обледенения. Обладает довольно небольшим временем защитного действия;
  • Тип III аналогичен типу II, но имеет меньшую концентрацию загустителей и применяется для турбовинтовых самолетов с низкой скоростью отрыва при взлете;
  • Тип IV – основной тип жидкости, используемый для защиты от обледенения, имеет высокую концентрацию загущающих присадок, в результате чего достигается более длительный период защитного действия.

Многие производители для удобства наземных служб и летного состава добавляют в жидкость красители, таким образом можно визуально определить тип применяемой жидкости.

Окрашенная ПОЖ различных типов.

De-icing и anti-icing, в чем разница?

Для безопасного взлета недостаточно только удалить отложения с критических поверхностей воздушного судна, необходимо также предотвратить их последующее появление вплоть до момента взлета.

Если требуется только очистить самолет от снега и льда, проводится обработка в один этап, ее называют de-icing .

Если же сохраняются условия для обледенения (идет снег или переохлажденный дождь), проводится обработка в два этапа, при этом второй этап обеспечивает защиту воздушного судна от обледенения до момента взлета (anti-icing ). Жидкость для предотвращения обледенения имеет значительно большую концентрацию и определенный промежуток времени не дает осадкам замерзать. Кроме того, в нее добавляются загущающие присадки, что позволяет обеспечить большее время защиты.

Обработка крыла защитной жидкостью.

Длительность защитного действия зависит от вида и интенсивности осадков, температуры, использовавшейся для обработки жидкости. Она определяется экипажем по специальным таблицам, при этом за время начало защитного действия принимается время начала, а не окончания обработки. В случае если взлет не произведен до окончания защитного действия ПОЖ, и сохраняются условия для обледенения, командир обязан запросить повторную обработку самолета. Эта проблема особенно актуальна для крупных аэродромов, где зачастую скапливается большая очередь на взлет. Во многих зарубежных аэропортах существует практика обработки самолета непосредственно перед взлетом на специально оборудованных стоянках, в России подобных стоянок пока ни на одном аэродроме нет.

Специальные стоянки для облива в непосредственной близости от ВПП (аэропорт Цюрих).

Как уже говорилось, противообледенительная обработка применяется только для защиты от обледенения на земле. В процессе взлета под действием набегающего потока остатки жидкости стекают с самолета. В полете борьба с обледенением осуществляется с помощью штатных систем воздушного судна. Существует несколько методов предотвращения обледенения в полете. На большинстве пассажирских самолетов горячий воздух из двигателей используется для нагрева передней кромки крыла, стабилизатора и воздухозаборников двигателей.

Многие авиапассажиры особенно те, которым достались места с видом на крыло самолета, зимой очень часто могут наблюдать интересную процедуру. Пассажиры называют ее по разному: покрытие, опрыскивание, распыление, опыление, обрызгивание (лично слышал:) как люди говорили так) самолета противообледенительной жидкостью. В этом посте я постараюсь Вам рассказать об очень важной и ответственной процедуре, которая входит в свод правил авиационной безопасности — а именно противообледенительной обработке самолётов.

В один из прекрасных весенних дней, на примере самолета Ан-24 авиакомпании Ираэро я запечатлел этот процесс от начала и до конца, а теперь давайте раскроем понятие, что же какое противообледенительная обработка - это обработка поверхностей воздушного судна (в простонародье самолета) на земле перед полётом с целью удаления замёрзших осадков и предотвращения их появления на критических поверхностях самолета до взлёта. На официальном языке ICAO, а это английский язык - deicing (деайсинг).

Обработка может включать в себя несколько этапов, на снимке ниже Вы видите механическое удаление льда и снега которое можно производить с помощью щёток, резиновых скребков и мётел. Этот способ наиболее трудоёмок и к тому же он занимает значительное время и потому малоприменим в условиях интенсивного использования авиатехники, а еще если самолет большой.

Для чего вообще производить эту операцию? Так вот необходимость очистить от льда и снега поверхность самолёта обусловлена значительным влиянием замёрзших осадков на аэродинамические свойства поверхностей. Находящиеся на верхней поверхности крыла самолёта снег, иней и лёд снижают критический угол атаки, увеличивают скорость сваливания и превращают обтекающий поток из ламинарного в турбулентный. Мы же все с Вами помним, что турбулентность это не есть хорошо.

В случае расположения двигателей сзади крыла, на хвосте, массовый вброс снега и льда во входные устройства авиадвигателей при взлёте может привести к помпажу и самовыключению двигателей. Известны случаи авиакатастроф по этой причине. Так же лед оторванный с крыла самолета может повредить передние кромки хвостового оперения.

Подведем итог: лед и снег на самолете влияет на его подъемную силу и управляемость при взлете и наборе высоты, избежать этого можно только обработкой поверхностей самолета противообледенительной жидкостью.

Следующий метод противообледенительной обработки это физико-химический метод. В случае с нашим самолетом применят именно его. Эта обработка производится с применением спецмашин, имеющих баки для содержания и подогрева противообледенительной жидкости и устройства для ее нанесения с регулировкой степени распыла: сплошной струёй или конусом.

Машины бывают разные, в нашем случае машина имеет закрытую кабину с создаваемым комфортным микроклиматом и дистанционным управлением органами распыла противообледенительной жидкости, и это не спроста в аэропорту Магадана зимой столбик термометра может опускаться до - 45 градусов по Цельсию.

При отсутствии осадков (снега, дождя) как в нашем случае проводится только удаление обледенения нагретой примерно до +60..+70 градусов по Цельсию противообледенительной жидкостью (ПОЖ). За счёт температуры ПОЖ растапливает снег и лед на поверхностях самолета и далее получившаяся влага смывается струёй жидкости. Если идет снег или дождь самолет после первого этапа обработки покрывается тонким слоем другой ПОЖ (вяжущей), которая обеспечивает более долговременную защиту. Время защитного действия зависит от типа ПОЖ и погодных условий и может составлять от нескольких минут до 45 минут. Плёнка ПОЖ защищает поверхность самолета на время руления к ВПП и разбега, а затем сдувается встречным потоком воздуха при скорости примерно 150 км/час.

Решение, о проведении противообледенительной обработки, после авиакатастрофы в Тюмени принимают совместно администрация аэропорта и командир экипажа самолета. Самое интересное, что если кто-то из двух сторон, считает что обработка необходима, а вторая несогласна, противообледенительная обработка проводится в обязательном порядке. В нашем случае член экипажа воздушного судна, наблюдает за противообледенительной обработкой.

Чтобы до конца раскрыть тему скажу, что есть еще один метод и называется от тепловой. Это когда обледенение удаляется с самолета нагревом его поверхностей, какими либо излучателями или помещением его в тёплый ангар. Но в связи с большой затратностью и недостаточной эффективностью этот способ очень редко используется.

Изобретение касается экологически безвредной жидкости для предотвращения обледенения самолетов и взлетно-посадочных полос, причем указанная жидкость особенно подходит для различного распылительного оборудования. Жидкость содержит 10-60 вес.% триметилглицина и 40-90 вес.% воды. Давление паров указанной жидкости составляет менее 5 Па, а кратковременный токсический эффект при пероральном применении на крысах LD 50 составляет более 10000 мг/кг. Технический результат - создание нетоксичной и безопасной жидкости против обледенения. 8 з.п. ф-лы, 6 табл.

Изобретение касается безвредной для окружающей среды жидкости для предотвращения обледенения самолетов и взлетно-посадочных полос, причем указанная жидкость является особенно подходящей для различного оборудования, предназначенного для распыления. Предотвращение образования льда на самолетах и взлетно-посадочных полосах, а также удаление льда обычно осуществляется с помощью некоторых химических веществ, понижающих температуру замерзания, чтобы обеспечить безопасный взлет, посадку и полет, особенно в зимнее время. Эти антифризы обычно представляют собой распыляемые растворы или пены на основе этилен- или пропиленгликоля, которые, если необходимо, смешаны с загустителями для увеличения вязкости, с водой, поверхностно-активными веществами (ПАВ) и ингибиторами коррозии. Такие средства против обледенения на основе этилен- или пропиленгликоля являются токсичными и загрязняют окружающую среду, когда они попадают в землю. Кроме того, они испускают неприятный запах, который попадает в воздух и разносится воздушными потоками. Такие средства против обледенения могут также вызвать проблемы, связанные с коррозией. Средства против обледенения, обычно распыляемые на самолеты, как правило, содержат по крайней мере 60% гликоля, обычно этиленгликоля, или смесь других гликолей. Функция антифриза состоит в удалении с поверхности самолета снега, льда и инея, которые образуются, когда самолет стоит в аэропорту. Снег, лед и иней, намерзшие на самолет, оказывают значительное влияние на аэродинамические свойства и эксплуатационные качества его двигателей, приводя в итоге к опасным ситуациям, например, во время взлета самолета. По этой причине самолеты всегда проверяют перед вылетом, чтобы быть уверенными, что на них нет льда, снега и инея. Предотвращение обледенения взлетно-посадочных полос и удаление с них льда включает в себя использование химических веществ, понижающих температуру замерзания. Основная функция этих веществ состоит в том, что они диффундируют через уже образовавшиеся снег и лед, ослабляя в них силы сцепления, что дает возможность значительно облегчить удаление снега и льда механическими способами. Кроме того, химические вещества, понижающие температуру замерзания, используют в условиях, когда вода и снег могут намерзать на взлетно-посадочной полосе. В патенте СССР 1664808 описана композиция, используемая для предотвращения смерзания и для оттаивания порошкообразных или гранулированных материалов типа муки, песка или любого другого материала. Эта композиция содержит хлорид магния или кальция, аммиак, углеводы, глицерин, молочную кислоту, летучие кислоты, бетаин, аминокислоты, алифатические соединения, а также воду. Задача этой композиции состоит в предотвращении смерзания порошкообразного материала, особенно во время его транспортировки, на стенках и дне контейнера, и его агрегации, а также в оттаивании уже замерзшего материала. В патенте США 5079036 описана размораживающая композиция для предотвращения смерзания и агрегации твердого гранулированного материала, подобного каменному углю или руде, во время его погрузки - выгрузки и транспортировки при температуре ниже 0 o С. Эта композиция образует пену на твердых частицах. Она содержит раствор, пригодный в качестве размораживающего средства, такой как раствор солей, подобных хлориду натрия, хлориду калия, хлориду магния, хлориду кальция, или раствор полигидроксильных соединений или моноалкиловых простых эфиров или диалкиловых простых эфиров, таких как этилен- и пропиленгликоли, глицерин, сахар и их смеси. Далее в качестве подходящих размораживающих веществ упомянуты производные целлюлозы, например натриевая соль карбоксиметилцеллюлозы и этилгидроксиэтилцеллюлоза. Кроме этого размораживающего вещества композиция включает в себя анионное или амфотерное ПАВ, которое дает возможность образования стабильной пены. Подходящими для этой цели являются, среди других, такие анионные ПАВ, как сульфонаты, и такие амфотерные ПАВ, как производные бетаина. Кроме того, композиция содержит воду. В европейском патенте 743305 описана размораживающая композиция, особенно для предотвращения обледенения самолетов и их крыльев. В этом патенте представлено новое ПАВ, а именно полиамидоэфир, которое можно использовать в сочетании с веществами, понижающими температуру замерзания, на основе алкиленгликолей, используя полиакриловые кислоты в качестве загустителей. Кроме того, указанные композиции обычно содержат ингибитор коррозии, необязательно амин, гидроксид калия или гидроксид щелочного металла и воду. Чаще всего жидкости, понижающие температуру замерзания, на основе воды в типичном случае являются водными смесями, состоящими из этилен- и пропиленгликолей и воды. В частности, этиленгликоль используется в различных случаях применения в автомобильной промышленности. Однако недостатками этиленгликоля являются его токсичность и загрязняющие свойства. В соответствии с этим вместо этиленгликоля часто используют пропиленгликоль в тех случаях, где требуется пониженная токсичность. Хотя пропиленгликоль относительно нетоксичен, он, однако, также является сомнительным с точки зрения экологии. Другим недостатком пропиленгликоля является то, что его вязкость значительно возрастает при низких температурах, что вызывает необходимость в большей мощности насосов для его перекачки. Более низкая токсичность этанола по сравнению с этиленгликолем делает его использование более желательным. Однако применение этанола ограничивается его высокой летучестью и, как следствие, склонностью к воспламенению, а также значительным возрастанием вязкости при низких температурах, однако это возрастание вязкости менее значительно, чем в случае пропиленгликолей. По этой причине этанол широко применяется в качестве охлаждающей жидкости в лабораториях и в тех ситуациях, когда требуется нетоксичность. Коррозия, особенно при использовании гликолей, делает совершенно необходимым поиск недорогих и эффективных ингибиторов коррозии. Составы и концентрации ингибиторов коррозии с трудом поддаются регулированию. Как правило, в результате применения эффективного ингибитора жидкость с очень низкой токсичностью становится токсичной. Обычно сложные растворы делают получаемую в результате жидкость более дорогостоящей. Задачей настоящего изобретения является создание жидкости, понижающей температуру замерзания, в особенности применимой для предотвращения обледенения самолетов и взлетно-посадочных полос, и оборудования для ее использования, посредством чего можно решить проблемы, связанные с существующим состоянием техники, и устранить существующие недостатки. Кроме того, задачей настоящего изобретения является создание жидкости, понижающей температуру замерзания, пригодной для самолетов и взлетно-посадочных полос, применение которой безопасно для окружающей среды и экономично, а также не создает никакого риска для здоровья. Жидкость против обледенения для самолетов и взлетно-посадочных полос, предложенная в этом изобретении, характеризуется в прилагаемой формуле изобретения. Согласно этому изобретению предпочтительным соединением, используемым в качестве компонента указанной жидкости против обледенения для самолетов и взлетно-посадочных полос, является триметилглицин или соли гидрата триметилглицина. Триметилглицин или бетаин является особенно предпочтительным. Бетаин, например, может быть получен путем экстракции из природных продуктов, таких как сахарная свекла, или путем биохимического процесса таким образом, чтобы дать возможность получения биологической жидкости против обледенения с благоприятным сроком службы. Жидкость, используемая для предотвращения обледенения самолетов и взлетно-посадочных полос, в соответствии с этим изобретением содержит 10-60% триметилглицина или его производного и 40-90% воды; предпочтительно 40-55% триметилглицина или его производного и 45-60% воды, причем все проценты являются весовыми. Среди преимуществ этой жидкости против обледенения ее нетоксичность и безопасность, а также отсутствие запаха. Некоторые из ее физических свойств являются такими же, как у растворов гликолей, и она может использоваться при температурах между -50 и +100 o С. Она предпочтительно используется при температурах в пределах от -40 до +80 o С. Характерным свойством размораживающих веществ является то, что они понижают температуру замерзания. Эта температура замерзания должна быть не выше -20 o С, а в случае бетаина даже может быть достигнута температура замерзания вплоть до -50 o С. Если это необходимо или желательно, жидкость против обледенения этого изобретения может быть смешана с обычными ингибиторами коррозии, стабилизаторами и маркирующими добавками, загустителями, ПАВ, другими размораживающими веществами, подобными гликолям или солям, а также с соединениями, регулирующими кислотность; все эти вещества хорошо известны в технике. Жидкость против обледенения согласно настоящему изобретению менее токсична и меньше загрязняет окружающую среду, чем жидкости против обледенения, уже известные в технике. Указанная жидкость не классифицируется как опасные отходы, и ее можно легко удалять, что снижает затраты. Отходы этой жидкости можно обрабатывать, не принимая никаких специальных мер безопасности, и они могут поглощаться почвой или спускаться в канализацию, тогда как этилен- и пропиленгликоли, а также этанол, обычно используемые в технике в настоящее время, необходимо удалять специальными способами, как опасные отходы. Жидкость против обледенения согласно настоящему изобретению пригодна для использования в различных областях для предотвращения обледенения или для удаления льда с самолетов, взлетно-посадочных полос и т.п., особенно при низких температурах и в ситуациях, когда жидкость должна быть безвредной для окружающей среды и нетоксичной. Оценка токсичности соединений основана на величинах LD 50 , взятых из литературы. Использованные величины LD 50 были получены при испытаниях на крысах при пероральном введении испытываемых соединений. Результаты показаны в таблице 1. В таблице 2 сравнивается кинематическая вязкость жидкостей при концентрации 50%. В таблице 3 показано, как различные соединения снижают температуру замерзания в 50%-ном растворе. В таблице 4 показано влияние триметилглицина на температуру замерзания водных растворов. Поверхностное натяжение типичных веществ, понижающих температуру замерзания, представлено в таблице 5. Поверхностное натяжение триметилглицина сравнимо с поверхностным натяжением воды и выше, чем у гликолей. В таблице 6 показано давление пара при 37,8 o С для нескольких жидкостей, понижающих температуру замерзания. Так как давление пара раствора триметилглицина ниже, чем у других растворов, он не испаряется (не улетучивается) также легко под действием потока воздуха. Жидкость согласно настоящему изобретению, содержащая 10-60% триметилглицина или его производных и 40-90% воды (по весу), применима в противообледенительных системах для самолетов и взлетно-посадочных полос, особенно для распыления на желаемую поверхность. Давление пара жидкости этого изобретения ниже 5 Па. Величина LD 50 составляет более 10000 мг/кг (для крыс при пероральном введении), и температура вспышки этой жидкости выше 100 o С. Далее температура замерзания 50%-ного раствора составляет менее -38 o С, причем его поверхностное натяжение менее 55 дин/см. Срок годности этой жидкости при хранении в стандартных условиях, при комнатной температуре составляет свыше 2 лет. Вязкость, важную характеристику жидкости, понижающей температуру замерзания, можно стабильно удерживать в желаемом диапазоне. Триметилглицин представляет собой нетоксичный и не имеющий запаха сырьевой материал природного происхождения, который биодеградирует в природных условиях на 80% за 20 суток. Медленная биодеградация - это проблема, связанная, например, с пропиленгликолями, которые применялись ранее. Триметилглицин снижает температуру замерзания воды, он обладает превосходными теплопередающими свойствами, из него не выделяются неприятные запахи и его можно использовать без добавления каких-либо ингибиторов коррозии, которые служат для предотвращения коррозии, так как он сам по себе обладает только слабым коррелирующим действием. Например, коррозия медных сплавов составляет менее 1 мкм/год, когда используются жидкости согласно этому изобретению. Кроме того, они не вызывают коррозию поликарбонатов, акриловых пластиков или окрашенных поверхностей. Гликоли, применявшиеся ранее в качестве составов против обледенения, оказывают вредное воздействие на герметики, присутствующие в конструкциях самолетов, тогда как жидкости против обледенения на основе триметилглицина не дают таких отрицательных эффектов. Возврат жидкостей против обледенения, содержащих гликоли, из аэропортов для их удаления или повторного использования очень затруднен, причем полный возврат в любом случае невозможен. Растворы триметилглицина не нужно возвращать, так как они быстро разлагаются в природных условиях. Растворы триметилглицина безопасны в обращении вследствие низкого давления пара и соответственно низкой летучести этих растворов. В противоположность этому, например, для этиленгликоля по соображениям безопасности установлено предельное давление пара 50 ч/млн (отношение общего количества пара к жидкости) (TVL). Безопасность по отношению к окружающей среде уже упоминалась как одно из основных преимуществ использования раствора триметилглицина в качестве жидкости для предотвращения обледенения самолетов и взлетно-посадочных полос. Это изобретение описано выше со ссылкой только на некоторые предпочтительные примеры его осуществления, детали которых, однако, не должны рассматриваться как ограничивающие это изобретение узкими рамками. Возможны многие модификации и видоизменения в пределах объема и сущности изобретения, определенных в прилагаемой формуле изобретения.

Формула изобретения

1. Жидкость против обледенения для самолетов и взлетно-посадочных полос, отличающаяся тем, что она содержит 10-60 вес.% триметилглицина и 40-90 вес. %. 2. Жидкость по п. 1, отличающаяся тем, что она содержит 40-55 вес.% триметилглицина и 45-60 вес.% воды. 3. Жидкость по п.1 или 2, отличающаяся тем, что давление паров указанной жидкости составляет менее 5 Па, а кратковременный токсический эффект при пероральном применении на крысах LD 50 составляет более 10000 мг/кг. 4. Жидкость по любому из пп.1-3, отличающаяся тем, что температура замерзания 50%-ной жидкости ниже -38 o С. 5. Жидкость по любому из пп.1-4, отличающаяся тем, что температура замерзания 35%-ной жидкости составляет -15 o С или ниже этой величины. 6. Жидкость по любому из пп.1-5, отличающаяся тем, что поверхностное натяжение 50%-ной жидкости составляет более 55 дин/см. 7. Жидкость по любому из пп.1-6, отличающаяся тем, что она содержит триметилглицин из биологического источника. 8. Жидкость по любому из пп.1-7, отличающаяся тем, что указанную жидкость против обледенения можно использовать при температуре, лежащей в пределах между -50 o С и +100 o С, предпочтительно между -40 o С и +80 o С. 9. Жидкость по любому из пп.1-8, отличающаяся тем, что она содержит в качестве добавок ингибиторы коррозии, стабилизаторы, маркирующие добавки, загустители, ПАВ, другие размораживающие вещества или соединения для регулирования кислотности.

Похожие патенты:

Изобретение относится к профилактическим смазочным материалам и может быть использовано для предотвращения пылеобразования на временных автодорогах карьеров при добыче полезных ископаемых открытым способом, а также для предотвращения прилипания, примерзания и смерзания влажных горных пород к стенкам горнотранспортного оборудования в горнодобывающей промышленности, например, для защиты поверхностей подвижного состава от примерзания и выдувания сыпучих материалов, например угля, торфа и т.д

Что такое противообледенительная обработка? Одного бортпроводника спросила пассажирка: "Неужели раньше помыть не могли самолет?". А бывает, народ поднимает панику и выскакивает через аварийные дверис криками "Пожар!", увидев, как начинают обрабатывать самолет. Такой случай был совсем недавно. Но, к сожалению, не вспомню сейчас компанию.

Когда начинается зима, появляются новые проблемы. Снег, лед, иней. Все это на поверхности самолета может привести к катастрофическим последствиям.

За примерами далеко ходить не надо. Як-40, 9 марта 2000 года с Артемом Боровиком на борту.

Как следует из окончательного отчёта комиссии МАК:
"Авиационное происшествие с самолётом Як-40Д RA 88170 произошло в результате его столкновения с землёй по причине сваливания вследствие неблагоприятного сочетания ряда следующих факторов, связанных как с нарушением РЛЭ самолёта Як-40 и ошибками в технике пилотирования экипажа, так и с нарушением инженерно-техническим персоналом технологических документов по подготовке самолёта к вылету после наземного обледенения, оказавшего влияние на ухудшение аэродинамических характеристик крыла :
- дефицит времени для выполнения взлёта во время, указанное в флайт-плане, из-за задержки прибытия пассажиров;
- взлёт с закрылками, выпущенными на угол 11° (требование РЛЭ самолёта Як-40 Р. 4.2 П. 16. закрылки перед взлётом должны быть выпущены на угол 20°), что уменьшило запас перегрузки от сваливания приблизительно вдвое (с Any = 0,8 до 0,4);
- ранний подъём передней стойки шасси
...
- ухудшение несущих свойств крыла из-за необработки противообледенительной жидкостью после механического удаления последствий наземного обледенения самолёта, что привело к раннему сваливанию самолёта;
- неучёт экипажем качества состояния поверхности крыла после механической очистки его от наземного обледенения.

Сваливание самолёта произошло при перегрузке не более 1,1 ед. по данным МСРП-12-96, что возможно только в случае значительной потери несущих свойств крыла, вызванной сохранившимися остатками наземного обледенения, что подтвердили трубные испытания полукрыла самолёта Як-40 и лётные испытания.

С 1946 по 1999 год произошло 147 авиакатастроф и происшествий по причине обледенения, из них 45 - сразу после взлета.

Почему так происходит? Потому что крыло у самолета - очень сложная аэродинамическая поверхность. Профиль крыла расчитывается очень точно и отклонения в этом профиле (в виде льда, например) вызывают непредсказуемые изменения несущих свойств крыла. Если по-простому, то крыло уже не "несет"=), и самолет может лететь только вниз...

Самолет может обледенеть в полете, но это уже совсем другая история. Сегодня я буду рассказывать о том, как удаляется наземное обледенение .

Итак, самолет всю ночь простоял на перроне, валил сильный снег и все это добро начало примерзать к крыльям.

Командир и наземный инженер принимают решение - обливать самолет надо. Через диспетчера вызываем машину облива ко времени вылета.

Машина терпеливо ждет, когда посадят всех пассажиров и отбуксируют самолет на стоянку, на которой можно обливать. В это время необходимо решить какой концентрацией жидкости нужно поливать самолет. С одной стороны - экономия противообледенительной жидкости, а с другой - температура наружного воздуха. Чем ниже температура - тем выше должна быть концентрация.

Самолет буксируют на точку облива и запуска.

И по команде командира воздушного судна удаление льда начинается.

Зрелище завораживает...

Фотографией не передать динамики...

Но самые офигенные ощущения, когда сам сидишь в люльке и поливаешь самолет.

Особенно смешно смотреть на лица пассажиров, которые не могут понять, что с ними сейчас будут делать=)...

Самое главное - сбить лед с кромки крыла и стабилизатора...

Обработка закончена, можно запускать двигатели и лететь.

И так почти каждый вылет зимой... Иностранцы обливаются чаще наших. Может перестраховываются... Говорят, что по инструкции положено. А неужели немец нарушит инструкцию?

В добрый путь!

Видео облива смотрим тут