Кардиословарь. Кровеносные сосуды и транспортировка крови

Мы подробно рассмотрели как воздух попадает в легкие. Теперь посмотрим, что с ним происходит дальше.

Система кровообращения

Мы остановились на том, что кислород в составе атмосферного воздуха поступает в альвеолы, откуда через их тонкую стенку посредством диффузии переходит в капилляры, опутывающие альвеолы густой сетью. Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее в левое его предсердие. Сердце работает как насос, прокачивая кровь по всему организму. Из левого предсердия обогащенная кислородом кровь отправится в левый желудочек, а оттуда - в путешествие по большому кругу кровообращения, к органам и тканям. Обменявшись в капиллярах тела с тканями питательными веществами, отдав кислород и забрав углекислый газ, кровь собирается в вены и поступает в правое предсердие сердца, и большой круг кровообращения замыкается. Оттуда начинается малый круг.

Малый круг начинается в правом желудочке, откуда легочная артерия несет кровь на «зарядку» кислородом в легкие, разветвляясь и опутывая альвеолы капиллярной сетью. Отсюда снова - по легочным венам в левое предсердие и так до бесконечности. Чтобы представить себе эффективность этого процесса, вообразите себе, что время полного оборота крови составляет всего 20-23 секунды. За это время объем крови успевает полностью «обежать» и большой и малый круг кровообращения.

Чтобы насытить кислородом столь активно меняющуюся среду, как кровь, необходимо учитывать следующие факторы:

Количество кислорода и углекислого газа во вдыхаемом воздухе (состав воздуха)

Эффективность вентиляции альвеол (площадь соприкосновения, на которой происходит обмен газами между кровью и воздухом)

Эффективность альвеолярного газообмена (эффективность веществ и структур, обеспечивающих соприкосновение крови и газообмен)

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

В обычных условиях человек дышит атмосферным воздухом, имеющим относительно постоянный состав. В выдыхаемом воздухе всегда меньше кислорода и больше углекислого газа. Меньше всего кислорода и больше всего углекислого газа в альвеолярном воздухе. Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний является смесью воздуха мертвого пространства и альвеолярного воздуха.

Альвеолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав артериальной крови. Регуляторные механизмы поддерживают постоянство состава альвеолярного воздуха, который при спокойном дыхании мало зависит от фаз вдоха и выдоха. Например, содержание С0 2 в конце вдоха всего на 0,2-0,3% меньше, чем в конце выдоха, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Кроме того, газообмен в легких протекает непрерывно, независимо от фаз вдоха или при выдоха, что способствует выравниванию состава альвеолярного воздуха. При глубоком дыхании, из-за нарастания скорости вентиляции легких, зависимость состава альвеолярного воздуха от вдоха и выдоха увеличивается. При этом надо помнить, что концентрация газов «на оси» воздушного потока и на его «обочине» тоже будет различаться: движение воздуха «по оси» будет быстрее и состав будет больше приближаться к составу атмосферного воздуха. В области верхушек легких альвеолы вентилируются менее эффективно, чем в нижних отделах легких, прилежащих к диафрагме.

Вентиляция альвеол

Газообмен между воздухом и кровью осуществляется в альвеолах. Все остальные составные части легких служат только для доставки воздуха к этому месту. Поэтому важна не общая величина вентиляции легких, а величина вентиляции именно альвеол. Она меньше вентиляции легких на величину вентиляции мертвого пространства. Так, при минутном объеме дыхания, равном 8000 мл и частоте дыхания 16 в минуту вентиляция мертвого пространства составит 150 мл х 16 = 2400 мл. Вентиляция альвеол будет равна 8000 мл - 2400 мл = 5600 мл. При том же самом минутном объеме дыхания 8000 мл и частоте дыхания 32 в минуту вентиляция мертвого пространства составит 150 мл х 32 = 4800 мл, а вентиляция альвеол 8000 мл - 4800 мл = 3200 мл, т.е. будет вдвое меньшей, чем в первом случае. Отсюда следует первый практический вывод , эффективность вентиляции альвеол зависит от глубины и частоты дыхания.

Величина вентиляции легких регулируется организмом таким образом, чтобы обеспечить постоянный газовый состав альвеолярного воздуха. Так, при повышении концентрации углекислого газа в альвеолярном воздухе минутный объем дыхания увеличивается, при снижении - уменьшается. Однако регуляторные механизмы этого процесса находятся не в альвеолах. Глубина и частота дыхания регулируются дыхательным центром на основании информации о количестве кислорода и углекислого газа в крови.

Обмен газов в альвеолах

Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности давления этих газов в альвеолярном воздухе и в крови.

Диффузия - взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении снижения концентрации вещества и ведет к равномерному распределению вещества по всему занимаемому им объему. Так, пониженная концентрация кислорода в крови ведет к его проникновению через мембрану воздушно-кровяного (аэрогематичеекого) барьера, избыточная концентрация углекислого газа в крови ведет к его выделению в альвеолярный воздух. Анатомически воздушно-кровяной барьер представлен легочной мембраной, которая, в свою очередь, состоит из эндотелиальных клеток капилляров, двух основных мембран, плоского альвеолярного эпителия, слоя сурфактанта. Толщина легочной мембраны всего 0,4-1,5 мкм.

Сурфактант - поверхностно-активное вещество, которое облегчает диффузию газов. Нарушение синтеза сурфактанта клетками легочного эпителия делает процесс дыхания практически невозможным из-за резкого замедления уровня диффузии газов.

Поступивший в кровь кислород и принесенный кровью углекислый газ могут находиться как в растворенном виде, так и в химически связанном. В обычных условиях в свободном (растворенном) состоянии переносится настолько малое количество этих газов, что им смело можно пренебречь при оценке потребностей организма. Для простоты будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.

Транспорт кислорода

Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин - это комплекс гемоглобина и молекулярного кислорода.

Гемоглобин содержится в красных кровяных тельцах - эритроцитах . Эритроциты под микроскопом похожи на слегка приплюснутый бублик. Такая необычная форма позволяет эритроцитам взаимодействовать с окружающей кровью большей площадью, чем шарообразным клеткам (из тел, имеющих равный объем, шар имеет минимальную площадь). А кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр и добираясь в самые отдаленные уголки организма.

В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика - время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол с соответствующими вентиляцией и кровоснабжением практически весь гемоглобин притекающей крови превращается в оксигемоглобин. А вот сама скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов.

Отсюда следует второй практический вывод : чтобы газообмен шел успешно, воздух должен «получать паузы», за время которых успевает выровняться концентрация газов в альвеолярном воздухе и притекающей крови, то есть обязательно должна присутствовать пауза между вдохом и выдохом.

Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) зависит от содержания растворенного кислорода в жидкой части плазмы крови. Причем механизмы усвоения растворенного кислорода весьма эффективны.

Например, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. И, несмотря на снижение атмосферного давления, ткани продолжают успешно снабжаться кислородом.

В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина не «отдает» молекулярный кислород - уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.

Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении концентрации углекислого газа (эффект Бора) и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.

Отсюда становится легко понятным, как взаимосвязаны и сбалансированы относительно друг друга природные процессы. Изменения способности оксигемоглобина удерживать кислород имеет громадное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет и облегчает «отдачу» гемоглобином кислорода и облегчает течение обменных процессов.

В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он уже не отдаст ее в кровь.

Количество кислорода в крови

Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Кислородная емкость крови зависит от содержания в ней гемоглобина.

В артериальной крови содержание кислорода лишь немного (на 3-4%) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180-200 мл кислорода. Даже в тех случаях, когда в экспериментальных условиях человек дышит чистым кислородом, его количество в артериальной крови практически соответствует кислородной емкости. По сравнению с дыханием атмосферным воздухом количество переносимого кислорода увеличивается мало (на 3-4%).

Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, протекая по тканевым капиллярам, кровь отдает не весь кислород.

Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода. Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100.

Например:
(200-120): 200 х 100 = 40%.

В покое коэффициент утилизации кислорода организмом колеблется от 30 до 40%. При интенсивной мышечной работе он повышается до 50-60%.

Транспорт углекислого газа

Углекислый газ транспортируется кровью в трех формах. В венозной крови можно выявить около 58 об. % (580 мл/л) С02, причем из них лишь около 2,5 объемных % находятся в растворенном состоянии. Некоторая часть молекул С02 соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин (приблизительно 4,5 об.%). Остальное количество С02 химически связано и содержится в виде солей угольной кислоты (приблизительно 51 об. %).

Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и оттуда диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (С02 + Н20 = Н2С03).

Этот процесс катализируется (ускоряется в двадцать тысяч раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Т.о, процесс соединения углекислого газа с водой происходит практически только в эритроцитах. Но это процесс обратимый, который может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует как образование угольной кислоты, так и расщепление ее на углекислый газ и воду (в капиллярах легких).

Благодаря указанным процессам связывания концентрация С02 в эритроцитах оказывается невысокой. Поэтому все новые количества С02 продолжают диффундировать внутрь эритроцитов. Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления, в результате во внутренней среде эритроцитов увеличивается количество воды. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу, поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем в оксигемоглобин.

Кроме того, при превращении оксигемоглобина в гемоглобин происходит увеличением способности крови связывать двуокись углерода. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей - бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин. В таком виде двуокись углерода переносится к легким.

В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется С02. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н20 и С02. Круг завершен.

Осталось сделать еще одно примечание. Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (С02) и чем кислород. Поэтому отравления угарным газом столь опасны: вступая с устойчивую связь с гемоглобином, угарный газ блокирует возможность нормального транспорта газов и фактически «душит» организм. Жители больших городов постоянно вдыхают повышенные концентрации угарного газа. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения оказывается неспособным выполнить транспортные функции. Отсюда обмороки и сердечные приступы относительно здоровых людей в условиях автомобильных пробок.

  • ‹ Назад

Кислород необходим для функционирования всех клеток. Гемоглобин, железосодержащий белок эритроцитов, используется, чтобы связывать кислород, доставлять его в ткани и затем высвобождать по потребности.

Каждая клетка человеческого организма для нормальной жизнедеятельности нуждается в постоянном снабжении энергией. В подавляющем большинстве клеток эта энергия получается в процессе окисления сахаров, прежде всего глюкозы. Фактически можно сказать, что организм сжигает сахара, так же как автомобиль сжигает горючее; этот процесс называется клеточным дыханием.

Глюкоза и кислород доставляются в ткани кровью. Когда два этих вещества вступают в химическую реакцию, они преобразуются в двуокись углерода (углекислый газ) и воду, которые переносятся кровью к специализированным органам (прежде всего легким и почкам) для выведения.

Эритроциты

В каждом кубическом миллиметре крови взрослого человека содержится около 5 млн эритроцитов (красных кровяных клеток).

Эти клетки имеют только одну функцию: транспортируют по организму дыхательные газы (кислород и углекислый газ).

Эритроциты производятся в костном мозге. В процессе развития они утрачивают ядро (часть клетки, которая содержит ДНК) и другие системы, отвечающие за синтез белка. Эритроциты человека имеют форму двояковогнутой линзы, которая обеспечивает одновременно достаточно большой объем клетки, чтобы переносить необходимое количество кислорода, и достаточно большую поверхность, чтобы обеспечить высокую скорость газообмена.

Анемия и ее причины

У здорового человека около 40-45% объема крови составляют красные кровяные клетки (это соотношение известно как гематокрит). Если гематокрит падает ниже нормального уровня, развивается анемия. Поскольку средняя продолжительность жизни эритроцита составляет около 120 дней, причинами анемии могут стать, например, слишком быстрое разрушение или, наоборот, слишком медленное производство красных кровяных клеток.

Так, при сильном кровотечении кишечник больного может оказаться не в состоянии усвоить достаточное количество железа, чтобы компенсировать потерю гемоглобина.

Еще одна причина снижения транспортной функции гемоглобина - генетические заболевания. Например, при серповидноклеточной анемии нарушается структура гемоглобина части эритроцитов. Патологические клетки хуже, чем нормальные, переносят кислород, легче разрушаются, а характерная серповидная форма затрудняет их прохождение через капилляры. Все эти факторы вместе приводят к развитию анемии.

Роль гемоглобина

Главная составляющая эритроцита, отвечающая за транспорт кислорода, - гемоглобин, сложный белок, разделенный на четыре субъединицы (глобины). Каждая из них состоит из большой полипептидной белковой молекулы и порфириновой группы, содержащей атом железа, -гема. Таким образом, каждая молекула гемоглобина способна обратимо связать четыре молекулы кислорода. Примерно 98% кислорода в крови находится в связанном состоянии. Остальные 2% растворены в плазме.

Высвобождение кислорода из эритроцитов

Высвобождение кислорода из гемоглобина запускается нарастанием содержания в крови продукта обмена - двуокиси углерода. Потребность в кислороде зависит от уровня его потребления тканями.

Кислород, связанный гемоглобином в легких, высвобождается в непосредственной близости от потребляющих его тканей.

В процессе клеточного дыхания производится большое количество углекислого газа, который диффундирует через клеточную мембрану и капиллярную стенку в плазму крови, а затем внутрь эритроцита. Нарастание концентрации двуокиси углерода внутри клетки запускает процесс высвобождения кислорода, который диффундирует в плазму, а затем в клетки ткани. Таким образом, кислород попадает именно туда, где он в данный момент необходим, а избыток двуокиси углерода уносится из тканей для выведения легкими. Только 23% образовавшегося в процессе обмена веществ углекислого газа переносится эритроцитами. Остальное транспортируется в форме ионов бикарбоната (70%) или растворенным в плазме (7%).

Фетальный гемоглобин

Поскольку концентрация кислорода в крови матери намного выше, чем в крови плода, кислород проходит через плаценту в кровеносную систему развивающегося ребенка в результате простого процесса диффузии. Фетальный гемоглобин (гемоглобин плода) структурно отличается от гемоглобина матери и намного активнее взаимодействует с кислородом. Кроме того, в миллилитре крови плода содержится на 50% больше молекул гемоглобина, чем у матери. Комбинация этих двух факторов гарантирует, что, несмотря на низкий уровень кислорода в крови плода, его ткани, тем не менее, получают достаточное снабжение для роста и развития.

Регулирование высвобождения кислорода

После прохождения крови через легочные капилляры она практически полностью оксигенируется (насыщается кислородом). Содержание кислорода достигает 97% кислородной емкости -максимального количества газа, который может быть обратимо связан гемоглобином. Когда кровь через артериальную систему достигает вен, она все еще содержит 75% кислородной емкости. Таким образом, у человека в состоянии покоя в тканях высвобождается только около 25% переносимого кровью кислорода. Избыточная кислородная емкость нужна, чтобы обеспечить транспорт большого количества кислорода в случае необходимости, например, при физической нагрузке.

Более того, зависимость между изменением уровня кислорода в тканях и скоростью его высвобождения из гемоглобина носит нелинейный характер (см. график). Поэтому даже небольшое снижение концентрации может вызвать значительный рост количества высвобождающегося кислорода. Вдобавок при физических нагрузках увеличивается кислотность крови и возрастает температура тела. Эти факторы вызывают изменение пространственной структуры гемоглобина, которое приводит к усилению связи с кислородом. Этот механизм позволяет в первую очередь снабжать кислородом те ткани, которые в нем больше всего нуждаются. Например, при беге наиболее нагруженные мышцы бедра получат больше всего кислорода.

В зависимости от транспортируемых веществ различают несколько основных функций крови: дыхательную, питательную, выделительную, регуляторную, гомеостатическую, защитную и терморегуляторную. Дыхательная функция крови состоит доставке кислорода от лёгких к тканям и полученного от них углекислого газа к лёгким. Транспорт кислорода осуществляется благодаря наличию в крови гемоглобина (Hb), разности парциального давления газов на этапе их транспортировки и некоторых других факторов. Ниже представлен состав вдыхаемого, альвеолярного и выдыхаемого воздуха (таблица 1), а также парциальное давление газов на различных этапах транспортировки (таблица 2).

Таблица 1. Состав вдыхаемого, альвеолярного и выдыхаемого воздуха (по Уайту и др., 1981)

Таблица 2. Парциальное давление дыхательных газов на разных участках их транспортировки у здоровых людей в состоянии покоя (Сиггаард-Андерсен, I960)

В норме потребление кислорода и потребность в нём тканей эквивалентны. При критических состояниях потребность в кислороде (метаболический запрос) может превышать его потребление, что сопровождается развитием тканевой гипоксии . В состоянии покоя организм за одну минуту потребляет около 250 мл кислорода. При значительной физической нагрузке это значение может увеличиваться до 2500 мл/мин.

Дыхательная функция крови: транспорт кислорода

Кислород в крови находится в двух видах: физически растворённый в плазме и химически связанный с гемоглобином (НЬ). Для определения клинической значимости каждого из этих двух видов существования кислорода необходимо провести несложные расчёты.

Нормальный минутный объём сердца (количество крови, выбрасываемое сердцем за одну минуту) равен 5 л/мин; из этого количества примерно 60% (3 л) приходится на плазму. Коэффициент растворимости кислорода в плазме крови при t = 38°С и при давлении 760 мм рт.ст. составляет 0,O 2 4 мл/мл. При этих условиях в 3 л плазмы может быть растворено (3000 х 0,O 2 4) 72 мл кислорода. Однако в циркулирующей крови парциальное давление кислорода намного меньше и составляет порядка 80-90 мм рт.ст., а поскольку любой газ растворяется в жидкостях пропорционально своему парциальному давлению, то можно рассчитать, что в 3 л циркулирующей в организме плазмы крови содержится около 8 мл растворённого кислорода. Это составляет приблизительно 3% от минимальной потребности организма, равной 250 мл/мин. Полученная величина совпадает с данными, выявленными Cuenter С.А. (1977). Это значение (3%) мало настолько, что им в дальнейшем можно пренебречь.

Помимо указанных выше факторов, на дыхательную функцию крови оказывает существенное влияние и внутриклеточный органический фосфат - 2,3-дифосфоглицерат (2,3-ДФГ). Это вещество образуется непосредственно в эритроцитах и влияет на сродство гемоглобина к кислороду. Этот показатель снижается при повышении концентрации 2,3-ДФГ в эритроцитах и повышается при её снижении.

К возрастанию сродства Hb к кислороду и смещению КДО влево при падении Р 50 приводят:

  • уменьшение давления углекислого газа (рС0 2);
  • уменьшение концентрации 2,3-ДФГ и неорганического фосфата;
  • снижение температуры тела;
  • повышение рН;

В то же время, уменьшение рН, увеличение рС0 2 , концентрации 2,3-ДФГ и неорганического фосфата, а также повышение температуры и ацидоз приводят к уменьшению сродства гемоглобина к кислороду и смещению КДО вправо при возрастании Р 50 .

Потребление кислорода, помимо функционального состояния Hb, в определённой степени отражает компенсаторную роль гемодинамики. Увеличение минутного объёма кровообращения (МОК) может компенсировать недостаток кислорода в крови.

Дыхательная функция крови: транспорт углекислого газа

Подавляющая доля углекислого газа (СO 2) в организме является продуктом клеточного метаболизма. Обладая высокой способностью к диффузии (в 20 раз выше, чем у кислорода), углекислый газ легко диффундирует в капилляры и переносится к лёгким в виде растворённой формы, аниона бикарбоната и карбаминовых соединений. В растворённой форме находится около 5% всего количества СO 2 .

В капиллярах большого круга кровообращения оксигемоглобин отдаёт кислород в ткани и превращается в восстановленный гемоглобин. Одновременно с этим в эритроциты поступает СO 2 , и очень быстро взаимодействуя с водой в присутствии внутриклеточного фермента карбоангидразы, образует угольную кислоту (СО 2 + H 2 O = H 2 CO 3). В плазме без данного фермента эта реакция протекает очень медленно. Образовавшаяся внутри клетки угольная кислота диссоциирует на НСО 3 и Н + . Образовавшийся ион водорода соединяется с восстановленным гемоглобином, образуя ННb, буферируется и остается внутри клетки. Тем самым деоксигенация артериальной крови в периферических тканях способствует связыванию протонов. Анионы НСО 3 по мере накопления переходят из эритроцитов в плазму, а из плазмы в эритроциты осуществляется приток ионов хлора (хлоридный сдвиг), который обеспечивает электрическую нейтральность клетки.

В данной форме находится основная часть СO 2 в артериальной крови (около 90%). Транспорт углекислого газа в виде карбаминовых соединений осуществляется за счёт его взаимодействия с концевыми аминогруппами белков крови (в основном это гемоглобин). Карбаминовые соединения переносят около 5% общего количества углекислого газа в артериальной крови. При этом в артерио-венозной разнице концентраций углекислого газа 60% приходится на НСО 3 , 30% - на карбаминовые соединения, 10% - на растворенную форму СO 2 . Подобное наличие в крови всех трех форм существования создает равновесие между растворенной и связанной формами углекислого газа.

Источники:
1. Федюкович Н.И. / Анатомия и физиология человека // Феникс, 2003.
2. Сумин С.А. / Неотложные состояния // Фармацевтический мир, 2000.

Связывание кислорода гемоглобином. Кислород, поступающий в кровь, сначала растворяется в плазме крови. При Ри0 100 мм рт. ст. в 100 мл плазмы растворяется всего 0,3 мл 02. Хотя растворенного кислорода и немного, но эта его форма играет важную промежуточную роль в газообмене. Такой кислород по градиенту концентрации проникает через мембрану эритроцита и сначала растворяется в его цитоплазме. Только после этого 02 вступает в соединение с Ре2+ гема и образует соединения, которые называют окси-гемоглобином (НЬ02). При этом валентность железа не изменяется. Оксигемоглобин - маломощная соединение, которое легко распадается в тканях. Прямую реакцию именуют оксигенацией, а обратный процесс, что происходит в тканях, - дезоксигенацією гемоглобина (рис. 83).

Каждая молекула гемоглобина способна присоединить четыре молекулы кислорода, что в пересчете на 1г гемоглобина означает 1,34 мл 02. Зная уровень гемоглобина крови, легко подсчитать кислородную емкость крови (КЕК):

КЕК = НЬ- 1,34.

Например: 15 o 1,34 = 20 (мл) кислорода содержится в 100 мл крови. Учитывая то, что те самые 100 мл крови содержат лишь 0,3 мл растворенного 02, можно сделать вывод, что основное количество кислорода, который транспортируется кровью, химически связан с гемоглобином.

Рис. 83.

Ассоциация и диссоциация оксигемоглобина

Интенсивность образования (ассоциации) оксигемоглобина обусловлена парциальным напряжением 02 в крови: чем выше уровень Р0 , тем больше образуется оксигемоглобина. Однако зависимость эта не прямо пропорциональная. Она имеет вид 8-образной кривой, определять которую удобнее за скоростью диссоциации оксигемоглобина (рис. 84). 8-образный характер ее определяется тем, что с увеличением количества молекул 02, которые присоединяются к каждой молекулы оксигемоглобина, этот процесс протекает активнее (автокаталіз). Так, если при отсутствии кислорода в крови (Р0 = 0) оксигемоглобина нет, а при Р0 = 10 мм рт. ст. 10 % гемоглобина переходит в оксигемоглобин, то при Р0 = 20 мм рт. ст. содержится уже около 30 % оксигемоглобина, а при Р0 = 40 мм рт. ст. - около 80 % оксигемоглобина, приР0 = 100 мм рт. ст. в крови будет содержаться около 100 % оксигемоглобина.

Необходимо уделить особое внимание двум участкам кривой: верхней, идущей почти параллельно оси ординат, и средний - резко падает вниз. Конфигурация первого участка свидетельствует о способности гемоглобина активно захватывать 02 в легких, а второй-легко отдавать его в тканях. Так, в процессе поглощения 02 кровью в легких уже при Р0а= 60 мм рт. ст. почти весь гемоглобин может присоединить кислород (более 90 % оксигемоглобина).

Рис. 84. в условиях нормы; 2 - за увеличения рН или температуры; С - за снижения рН или температуры; 4 - Р50О2

В смешанной венозной крови, полученной из правого предсердия, при Р0 в 40 мм рт. ст. содержание оксигемоглобина еще превышает 70 %. При КЕК в 20 мл1100 мл он составляет еще около 15 мл1100 мл крови создает резерв 02. Начиная со значения Р0 40 мм рт. ст., кривая круто опускается вниз. Вследствие даже незначительного уменьшения Р0 ниже 40 мм рт. ст., что происходит в тканях в случае более интенсивного их функционирования, скорость диссоциации оксигемоглобина резко увеличивается. Это обеспечивает значительное ускорение поступления кислорода к тканям из предыдущего объема крови. Например, при Рю, что равняется 20 мм рт. ст., оксигемоглобина остается лишь 30 %. Итак, ткани из каждых 100 мл крови получают уже не 5 мл кислорода, как в условиях нормы, а около 14 мл, то есть почти втрое больше.

Можно отметить, что благодаря такой особенности гемоглобина человек может жить высоко в горах, выполнять интенсивную мышечную работу и не всегда умирать от недостатка 02 при снижении уровня гемоглобина крови (анемии), затруднении газообмена через мембрану (например при пневмонии).

Изменение наклона кривой диссоциации оксигемоглобина.

Наклон кривой, т. е. скорость диссоциации оксигемоглобина в крови человека, не постоянен и в некоторых условиях может меняться. Скорость диссоциации оксигемоглобина обусловлено химическим сродством гемоглобина к 02 и некоторых внешних факторов, которые изменяют характер кривой. К таким факторам относятся температура, рН, Рго.

Форма кривой диссоциации оксигемоглобина в значительной степени зависит от концентрации в крови ионов Н+. При снижении рН кривая сдвигается вправо, что свидетельствует об уменьшении сродства гемоглобина с 02 и активации поступления его в ткани. Повышение рН увеличивает сродство и сдвигает кривую влево - возрастает поступление кислорода в кровь. Влияние рН на сродство гемоглобина с 02 называется эффектом Бора. Эффект Бора при многих состояниях в норме и патологии играет существенную роль в газотранспортной функции крови. Образование большого количества СО2 в тканях способствует увеличению отдачи 02 за счет снижения сродства гемоглобина с 02, а выделение СО2 в легких, уменьшая рН крови, наоборот, улучшает оксигенацию. СО2 также влияет на кривую диссоциации оксигемоглобина.

При снижении температуры отдача 02 окси-гемоглобином замедляется, а повышение температуры ускоряет этот процесс.

Показателем, характеризующим интенсивность применения кислорода тканями, является различие уровня оксигемоглобина крови, притекающей и оттекающей (артериовенозное различие по кислороду, АВР-02).

Таким образом, практическое отсутствие в организме запасов кислорода компенсируется возможностью резкого увеличения применения его из кровотока за счет повышения АВР-02. Интенсивное функционирование тканей, когда больше образуется СО2, Н+ и повышается температура, создает условия для увеличения доставки кислорода клеткам.

Отравления угарным газом.

Оксид углерода (СО) имеет большую (примерно в 350 раз) сродство с гемоглобином, чем кислород. Поэтому даже при очень малых его концентрациях в воздухе, а следовательно, и крови, образуются соединения карбоксигемоглобина (НЬСО). В связи с тем, что это соединения устойчивы, способность гемоглобина связывать кислород резко снижается. Обусловлено это тем, что СО связывается с молекулами железа в хэме, а при этом происходит сдвиг кривой диссоциации влево. В результате даже свободные молекулы гемоглобина хуже взаимодействуют с кислородом.

Диссоциация карбоксигемоглобина происходит очень медленно, поэтому в случае легкой степени отравления пострадавшего необходимо вынести на свежий воздух или давать кислород для дыхания.

Транспорт кислорода осуществляется в основном эритроцитами. Из 19 об.% кислорода, извлекаемого из артериальной крови, только 0,3 об.% растворены в плазме, остальное же количество О2 содержится в эритроцитах и находится в химической связи с гемоглобином. Гемоглобин (Нb) образует с кислородом непрочное, легко диссоциирующее соединение - оксигемоглобин (НbO02). Связывание кислорода гемоглобином зависит от напряжения кислорода и является легко обратимым процессом. При понижении напряжения кислорода оксигемоглобин отдает кислород.

Кривые диссоциации оксигемоглобнна . Если отложить по оси абсцисс парциальные давления кислорода, а но оси ординат - процент насыщения гемоглобина кислородом, т. е. процент гемоглобина, перешедшего в оксигемоглобин, то мы получим кривую диссоциации оксигемоглобина. Эта кривая (рис. 55, А ) имеет форму гиперболы и показывает, чте между парциальным давлением кислорода и количеством образующегося оксигемоглобина нет прямой пропорциональной зависимости. Левая часть кривой круто поднимается кверху. Правая же часть кривой имеет почти горизонтальное направление.

Рис. 55. Кривые диссоциации оксигемоглобина в водном растворе (А) и в крови (Б) при напряжении углекислого газа 40 мм рт. ст. (по Баркрофту).

То, что связывание гемоглобином кислорода дает такую кривую, имеет важное физиологическое значение. В зоне относительно высокого парциального давления кислорода, соответствующего давлению его в альвеолах легких, изменение давления кислорода в пределах 100-60 мм рт. ст. почти не оказывает влияния на горизонтальный ход кривой, т. е. почти не изменяет количества образовавшегося оксигемоглобина.

Приведенная на рис. 55 кривая А получается при исследовании растворов чистого гемоглобина в дистиллированной воде. В естественных же условиях плазма крови содержит различные соли и углекислоту, которые несколько изменяют кривую диссоциации оксигемоглобина. Левая часть кривой приобретает изгиб и вся кривая напоминает букву S. Из рис. 55 (кривая В) видно, что средняя часть кривой направляется круто книзу, а нижняя приближается к горизонтальному направлению.

Следует отметить, что нижняя часть кривой характеризует свойства гемоглобина в зоне низких , которые близки к имеющимся в тканях. Средняя же часть кривой дает представление о свойствах гемоглобина при тех величинах напряжения кислорода, которые имеются в артериальной и венозной крови

Резкое снижение способности гемоглобина связывать кислород в присутствии углекислого газа отмечается прп парциальном давлении кислорода, равном 40 мл рт. ст., т. е. при том его напряжении, которое имеется в венозной крови. Это свойство гемоглобина имеет важное значение для организма. В капиллярах тканей напряжение углекислого газа в крови увеличивается и потому уменьшается способность гемоглобина связывать кислород, что облегчает отдачу кислорода тканям. В альвеолах легких, где часть углекислого газа переходит в альвеолярный воздух, сродство гемоглобина к кислороду возрастает, что облегчает образование оксигемоглобина.

Особенно резкое снижение способности гемоглобина связывать кислород отмечается в крови мышечных капилляров во время интенсивной мышечной работы, когда в кровь поступают кислые продукты обмена веществ, в частности молочная кислота. Это способствует отдаче большого количества кислорода мышцам.

Способность гемоглобина связывать и отдавать кислород изменяется также в зависимости от температуры. Оксигемоглобин при одном и том же парциальном давлении кислорода в окружающей среде отдает больше кислорода при температуре тела человека (37-38°), чем при более низкой температуре.