Нейроны автономной нервной системы. Проводящие пути спинного мозга. Особенности нейронной организации спинного мозга. Спинной мозг

Афферентные импульсы, поступающие в спинной мозг из рецепторов, по коротким путям передаются на эфферентные нейроны соответствующего сегмента спинного мозга. Одновременно но длинным восходящим проводящим путям афферентные импульсы передаются в головной мозг. К эфферентным нейронам спинного мозга импульсы также поступают не только из афферентных нейронов, но и по нисходящим путям из головного мозга. Таким образом, спинной мозг связан с головным восходящими и нисходящими проводящими путями.

Восходящие проводящие пути . В этих путях находятся нервные волокна либо нейронов спинномозговых узлов, либо нейронов серого вещества задних рогов спинного мозга, с которыми вступают в контакт афферентные нейроны.

Восходящие пути задних столбов . 1. Нежный пучок (пучок Голля). Это наиболее длинные волокна, проводящие афферентные импульсы от рецепторов нижних конечностей и нижней части туловища.

2. Китовидный пучок (пучок Бурдаха). Это волокна, проводящие афферентные импульсы от рецепторов верхних конечностей и верхней части туловища.

Волокна обоих пучков проводят афферентные импульсы из рецепторов кожи (осязания и давления) и проприоцепторов, а также афферентные импульсы из рецепторов внутренних органов, поступающие по чревному, блуждающему и тазовому нервам.

У человека волокна пучка Голля миелинизируются позднее волокон пучка Бурдаха, что связано с более поздним функционированием ног и более ранним функционированием мускулатуры рук и верхней части туловища после рождения. К рождению задние столбы покрыты миелином.

После повреждения задних столбов координация движений бывает нарушена.

Восходящие пути боковых столбов . 3. Задний спито-мозжечковый путь (пучок Флексига).

4. Передний спинно-мозжечковый путь (пучок Говерса).

Оба нервных пути проводят афферентные импульсы из проприоцепторов в мозжечок. Повреждения этих путей сопровождаются нарушением тонуса и координации движений.

5. Спинно-таламический путь. Боковая часть этого пути проводит импульсы из болевых и температурных рецепторов, а брюшная часть - импульсы из рецепторов осязания и давления . По спинно-таламическому пути волокна доходят до нейронов зрительных бугров. В боковых столбах содержатся также отдельные нервные волокна, проводящие импульсы из внутренних органов.

Нисходящие проводящие пути . 1. Кортикоспинальный передний, или прямой пирамидный, путь. Перекрещивается в спинном мозге. 2. Кортикоспинальный боковой, или перекрещенный пирамидный путь. Перекрещивается в продолговатом мозге. Не все волокна пирамидного пути перекрещиваются, часть их проходит по одноименной стороне.

Пирамидные пути появляются в филогенезе только у млекопитающих и достигают наивысшего развития у человека.

Так, у собак масса волокон пирамидных путей составляет 10% всего количества белого вещества спинного мозга, у обезьян - 20%, а у человека - почти 30%.

Из двух миллионов нервных волокон, входящих в состав пирамидных путей человека, 40% исходит из нейронов передней центральной извилины, 60% - из нейронов извилин, расположенных впереди нее, а также из задней центральной извилины и других областей. Пирамидные пути на 80% состоят из вегетативных волокон (группы С), проводящих эфферентные импульсы к внутренним органам. В обоих пирамидных путях содержатся толстые миелиновые волокна, быстро проводящие импульсы возбуждения, и гонкие, медленно проводящие. В перекрещенный путь входит 70-90% общего числа волокон.

По пирамидным путям проводятся эфферентные импульсы из коры больших полушарий к моторным нейронам передних рогов спинного мозга, вызывающие и тормозящие сокращения скелетной мускулатуры. Вследствие перекрещивания обоих пирамидных путей каждое большое полушарие головного мозга иннервирует мускулатуру противоположной части тела. Оба пирамидных пути одной половины спинного мозга человека в верхних шейных сегментах содержат волокон больше чем в 2 раза в сравнении с верхним грудным сегментом. Быстрая убыль количества нервных волокон пирамидных путей происходит после их окончания у моторных клеток передних рогов, иннервирующих руки, что связано с огромным значением труда в жизни человека.

Пирамидные пути у человека начинают миелинизироваться через 5-6 месяцев после рождения. Их миелинизация заканчивается к 4-10 годам. Поражение пирамидных путей на одной стороне приводит к параличу мускулатуры одной половины тела: поражения выше перекреста бокового пирамидного пути у человека парализуют произвольные движения на противоположной половине тела, а если ниже, в верхней части шейного отдела, то парализуется та же сторона. Мышцы не перерождаются, и рефлексы не исчезают. Наоборот, спинномозговые рефлексы даже значительно увеличиваются вследствие того, что прекращается задерживающее влияние на них центров головного мозга. Показатель перерыва пирамидных путей - рефлекс Бабинского. В отличие от человека перерезка пирамидных путей у собак и обезьян не лишает их способности к гак называемым произвольным движениям. Это указывает на то, что пирамидные пути играют у человека главную роль в передаче импульсов с коры больших полушарий на моторные нейроны передних рогов спинного мозга. Значительная роль принадлежит и другим путям, которые способны брать на себя функцию пирамидных путей.

3. Руброспинальный путь (пучок Монакова). Состоит из длинных отростков нейронов красного ядра, находящегося в среднем мозге. Ввиду того что красное ядро связано с мозжечком, этот путь может служить нисходящим путем для мозжечка. Так как красное ядро связано также с корой больших полушарий, то при разрушениях пирамидных путей руброспинальные пути проводят двигательные импульсы с коры больших полушарий в спинной мозг.

4. Вестибулоспинальный путь (из вестибулярного аппарата внутреннего уха). Участвует в регуляции мышечного тонуса.

Кроме перечисленных имеются еще другие нисходящие пути, соединяющие промежуточный, средний и продолговатый мозг со спинным мозгом.

Спинальный шок . Шок у животных с постоянной температурой тела состоит в том, что ниже места повреждения спинного мозга отсутствует рецепция, нет гак называемых произвольных движений, мышцы расслаблены и лишены тонуса, отсутствуют все рефлексы, кроме рефлексов на сфинктеры мочевого пузыря и прямой кишки.

Ч. Шеррингтон (1906) считал, что главную роль в явлениях шока играет прекращение притока импульсов из высшего отдела нервной системы и связанных с ним высших рецепторов, поддерживающих возбудимость спинного мозга. Однако после перерезки у собак задней половины спинного мозга или только задних столбов спинальный шок вызывается торможением, которое распространяется по нисходящим путям в часть спинного мозга, расположенную ниже перерезки, вследствие раздражения перерезанных афферентных путей задних столбов (М. Г. Дурмишьян, 1955). Чем выше развито животное, тем большее значение для его жизнедеятельности имеют импульсы из высших рецепторов и поэтому тем резче выражен шок.

Проводящими путями называют пучки функционально однородных нервных волокон, соединяющие различные центры в центральной нервной системе, занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковые импульсы.

Импульсы, возникающие при воздействии на рецепторы, передаются по отросткам нейронов к их телам. Благодаря многочисленным синапсам нейроны контактируют друг с другом, образуя цепи, по которым нервные импульсы распространяются только в определенном направлении - от рецепторных нейронов через вставочные к эффекторным нейронам. Это обусловлено морфофункциональными особенностями синапсов, которые проводят возбуждение (нервные импульсы) только в одном направлении - от пресинаптической мембраны к постсинаптической.

По одним цепям нейронов импульс распространяется центростремительно - от места возникновения в коже, слизистых оболочках, органах движения, сосудах к спинному или головному мозгу. По другим цепям нейронов импульс проводится центробежно из мозга на периферию к рабочим органам - мышцам и железам. Отростки нейронов направляются из спинного мозга к различным структурам головного мозга, а от них в обратном

Рис. 44. Расположение пучков ассоциативных волокон белого вещества правого полушария большого мозга, медиальная поверхность (схема): 1 - поясная извилина; 2 - верхний продольный пучок; 3 - дугообразные волокна большого мозга; 4 - нижний продольный пучок

направлении - к спинному мозгу и образуют пучки, соединяющие между собой нервные центры. Эти пучки и составляют проводящие пути.

В спинном и головном мозге выделяют три группы нервных волокон (проводящих путей): ассоциативные, комиссуральные и проекционные.

Ассоциативные нервные волокна (короткие и длинные) соединяют между собой группы нейронов (нервные центры), расположенные в одной половине мозга (рис. 44). Короткие (внутридолевые) ассоциативные пути соединяют близлежащие участки серого вещества и располагаются, как правило, в пределах одной доли мозга. Среди них выделяют дугообразные волокна большого мозга (fibrae arcuatae), которые изгибаются дугообразно и соединяют между собой серое вещество соседних извилин, не выходя за пределы коры (интракортикальные) или проходя в белом веществе полушария (экстракортикальные). Длинные (междолевые) ассоциативные пучки соединяют между собой участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных долях. К ним относятся верхний продольный пучок (fasciculus longitudinalis superior), проходящий в верхних слоях белого вещества полушария и соединяющий кору лобной доли с теменной и затылочной;

нижний продольный пучок (fasciculus longitudinalis inferior), лежащий в нижних слоях белого вещества полушария и связывающий серое вещество височной доли с затылочной, и крючковидный пучок (fasciculus uncipatus), соединяющий кору в области лобного полюса с передней частью височной доли. Волокна крючковидного пучка изгибаются дугообразно вокруг островка.

В спинном мозге ассоциативные волокна соединяют между собой нейроны, расположенные в различных сегментах, и образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, длинные соединяют далеко отстоящие друг от друга сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна соединяют одинаковые центры (серое вещество) правого и левого полушарий большого мозга, образуя мозолистое тело, спайку свода и переднюю спайку (рис. 45). Мозолистое тело соединяет между собой новые отделы коры большого мозга правого и левого полушарий. В каждом полушарии волокна расходятся веерообразно, образуя лучистость мозолистого тела (radiatio corporis callori). Передние пучки волокон, проходящие в колене и клюве мозолистого тела, соединяют кору передних отделов лобных долей, образуя лобные щипцы (forceps frontalis). Эти волокна как бы охватывают с двух сторон переднюю часть продольной щели головного мозга. Кору затылочных и задних отделов теменных долей большого мозга соединяют пучки волокон, проходящие в валике мозолистого тела. Они образуют так называемые затылочные щипцы (forceps occipitalis). Изгибаясь кзади, пучки этих волокон как бы охватывают задние отделы продольной щели большого мозга. Волокна, проходящие в центральных отделах мозолистого тела, связывают кору центральных извилин, теменных и височных долей полушарий большого мозга.

В передней спайке проходят волокна, соединяющие между собой участки коры височных долей обоих полушарий, принадлежащие обонятельному мозгу. Волокна спайки свода соединяют серое вещество гиппокампов и височных долей обоих полушарий.

Проекционные нервные волокна (проводящие пути) подразделяются на восходящие и нисходящие. Восходящие связывают спинной мозг с головным, а также ядра мозгового ствола с базальными ядрами и корой полушарий большого мозга. Нисходящие идут в обратном направлении (табл. 1).

Рис. 45. Комиссуральные волокна (лучистость) мозолистого тела, вид сверху. Верхние отделы лобных, теменных и затылочных долей большого мозга удалены: 1 - лобные щипцы (большие щипцы); 2 - мозолистое тело; 3 - медиальная продольная полоска; 4 - латеральная продольная полоска; 5 - затылочные щипцы

(малые щипцы)

Восходящие проекционные пути являются афферентными, чувствительными. По ним к коре большого мозга поступают нервные импульсы, возникшие в результате воздействия на организм различных факторов внешней среды, включая импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов. В зависимости от этого восходящие проекционные пути делятся на три группы: экстероцептивные, проприоцептивные и интероцептивные проводящие пути.

Экстероцептивные проводящие пути несут импульсы от кожного покрова (болевые, температурные, осязания и давления), от органов чувств (зрения, слуха, вкуса, обоняния). Проводящий путь болевой и температурной чувствительности (латеральный спинноталамический путь, tractus spinothalamicus lateralis) состоит из трех нейронов (рис. 46). Рецепторы первых (чувствительных) нейронов, воспринимающие указанные раздражения, располагаются в коже и слизистых оболочках, а тела клеток лежат в спинномозговых узлах. Центральные отростки в составе заднего корешка направляются в задний рог спинного мозга и заканчиваются синапсами на клетках вторых нейронов. Все аксоны вторых нейронов, тела которых лежат в заднем роге, через переднюю серую спайку переходят на противоположную сторону спинного мозга, входят в боковой канатик, включаются в состав латерального спинноталамического пути, который поднимается в продолговатый мозг (кзади от ядра оливы), проходит в покрышке моста и в покрышке среднего мозга, проходя у наружного края медиальной петли. Аксоны заканчиваются, образуя синапсы на клетках, расположенных в задне-латеральном ядре таламуса (третий нейрон). Аксоны этих клеток проходят через заднюю ножку внутренней капсулы и в составе веерообразно расходящихся пучков волокон, образующих лучистый венец (corona radiata), направляются к нейронам внутренней зернистой пластинки коры (IV слой) постцентральной извилины, где находится корковый конец анализатора общей чувствительности. Волокна третьего нейрона чувствительного (восходящего) проводящего пути, соединяющего таламус с корой, образуют таламокортикальные пучки (fasciculi thalamocorticales) - таламотеменные волокна (fibrae thalamoparietales). Латеральный спинноталамический путь является полностью перекрещенным проводящим путем (все волокна второго нейрона переходят на противоположную сторону), поэтому при повреждении одной половины спинного мозга полностью исчезают болевая и температурная чувствительность на противоположной стороне от повреждения.

Проводящий путь осязания и давления (передний спинноталамический путь, tractus spinothalamicus anterior) несет импульсы от кожи, где лежат

Таблица 1. Проводящие пути головного и спинного мозга


Продолжение таблицы 1.


Продолжение таблицы 1


Окончание таблицы 1.


Рис. 46. Проводящие пути болевой и температурной чувствительности,

осязания и давления (схема): 1 - латеральный спинноталамический путь; 2 - передний спинноталамический путь; 3 - таламус; 4 - медиальная петля; 5 - поперечный разрез среднего мозга; 6 - поперечный разрез моста; 7 - поперечный разрез продолговатого мозга; 8 - спинномозговой узел; 9 - поперечный разрез спинного мозга. Стрелками показано направление движения нервных импульсов

рецепторы, к клеткам коры постцентральной извилины. Тела первых нейронов (псевдоуниполярных клеток) лежат в спинномозговых узлах. Центральные отростки этих клеток в составе задних корешков спинномозговых нервов направляются в задний рог спинного мозга. Аксоны нейронов спинномозговых узлов образуют синапсы с нейронами заднего рога спинного мозга (вторые нейроны). Большинство аксонов второго нейрона также переходят на противоположную сторону спинного мозга через переднюю спайку, входят в передний канатик и в его составе следуют вверх, к таламусу. Часть волокон второго нейрона идут в заднем канатике спинного мозга и в продолговатом мозге присоединяются к волокнам медиальной петли. Аксоны второго нейрона образуют синапсы с нейронами задне-латерального ядра таламуса (третий нейрон). Отростки клеток третьего нейрона проходят через заднюю ножку внутренней капсулы, затем в составе лучистого венца направляются к нейронам IV слоя коры постцентральной извилины (внутренней зернистой пластинке). Не все волокна, несущие импульсы осязания и давления, переходят на противоположную сторону в спинном мозге. Часть волокон проводящего пути осязания и давления идет в составе заднего катика спинного мозга (своей стороны) вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления. В связи с этим при поражении одной половины спинного мозга кожное чувство осязания и давления на противоположной стороне не исчезает полностью, как болевая чувствительность, а только снижается. Этот переход на противоположную сторону частично осуществляется в продолговатом мозге.

Проприоцептивные проводящие пути проводят импульсы от мышц, сухожилий, суставных капсул, связок. Они несут информацию о положении частей тела в пространстве, объеме движений. Проприоцептивная чувствительность позволяет человеку анализировать собственные сложные движения и проводить их целенаправленную коррекцию. Выделяют проприоцептивные пути коркового направления и проприоцептивные пути мозжечкового направления. Проводящий путь проприоцептивной чувствительности коркового направления несет импульсы мышечно-суставного чувства к коре постцентральной извилины большого мозга (рис. 47). Рецепторы первых нейронов, расположенные в мышцах, сухожилиях, суставных капсулах, связках, воспринимают сигналы о состоянии опорно-двигательного аппарата в целом, мышечном тонусе, степени растяжения сухожилий и по спинномозговым нервам направляют эти сигналы к телам первых нейронов этого пути, которые лежат в спинномозговых узлах. Тела

Рис. 47. Проводящий путь проприоцептивной чувствительности

коркового направления (схема): 1 - спинномозговой узел; 2 - поперечный разрез спинного мозга;

3 - задний канатик спинного мозга;

4 - передние наружные дугообразные волокна; 5 - медиальная петля; 6 - таламус; 7 - поперечный разрез среднего мозга; 8 - поперечный разрез моста; 9 - поперечный разрез продолговатого мозга; 10 - задние наружные дугообразные волокна. Стрелками показано направление движения

нервных импульсов

первого нейрона этого пути также лежат в спинномозговых узлах. Аксоны первых нейронов в составе заднего корешка, не входя в задний рог, направляются в задний канатик, где образуют тонкий и клиновидный пучки.

Аксоны, несущие проприоцептивные импулься, входят в задний канатик, начиная с нижних сегментов спинного мозга. Каждый следующий пучок аксонов прилежит с латеральной стороны к уже имеющимся пучкам. Таким образом, наружные отделы заднего канатика (клиновидный пучок, пучок Бурдаха) заняты аксонами клеток, осуществляющих проприоцептивную иннервацию в верхнегрудных, шейных отделах тела и верхних конечностей. Аксоны, занимающие внутреннюю часть заднего канатика (тонкий пучок, пучок Голля), проводят проприоцептивные импульсы от нижних конечностей и нижней половины туловища.

Волокна в составе тонкого и клиновидного пучков следуют наверх в продолговатый мозг к тонкому и клиновидному ядрам, где заканчиваются синапсами на телах вторых нейронов. Аксоны вторых нейронов, выходящие из этих ядер, дугообразно изгибаются вперед и медиально и на уровне нижнего угла ромбовидной ямки переходят на противоположную сторону в межоливном слое продолговатого мозга, образуя перекрест медиальной петли (decussatio lemniscorum medialium). Это внутренние дугообразные волокна (fibrae arcuatae internae), которые формируют начальные отделы медиальной петли. Затем волокна медиальной петли проходят вверх через покрышку моста и покрышку среднего мозга, где располагаются дорсально-латеральнее красного ядра. Эти волокна заканчиваются в дорсальном латеральном ядре таламуса синапсами на телах третьих нейронов. Аксоны клеток таламуса направляются через заднюю ножку внутренней капусулы в составе лучистого венца в кору постцентральной извилины, где образуют синапсы с нейронами IV слоя коры (внутренней зернистой пластинки).

Другая часть волокон вторых нейронов (задние наружные дугообразные волокна, efibrae arcueatae exteernae posterieores) по выходе из тонкого и клиновидного ядер направляется в нижнюю мозжечковую ножку своей стороны и заканчивается синапсами в коре червя. Третья часть аксонов вторых нейронов (передние наружные дугообразные волокна, fibrae arcudtae extdrnae anterieores) переходит на противоположную сторону и также через нижнюю мозжечковую ножку противоположной стороны направляется к коре червя. Проприоцептивные импульсы по этим волокнам идут к мозжечку для коррекции подсознательных движений опорно-двигательного аппарата.

Итак, проприоцептивный путь коркового направления также перекрещенный. Аксоны второго нейрона переходят на противоположную сторону не в спинном мозге, а в продолговатом мозге. При повреждении

спинного мозга на стороне возникновения проприоцептивных импульсов (при травме мозгового ствола - на противоположной стороне) теряется представление о состоянии опорно-двигательного аппарата, положении частей тела в пространстве, нарушается координация движений.

Имеются проприоцептивные проводящие пути мозжечкового направления - передний и задний спинномозжечковые проводящие пути, которые несут в мозжечок информацию о состоянии опорно-двигательного аппарата и двигательных центров спинного мозга.

Задний спинномозжечковый проводящий путь (пучок Флексига) (tractus spinocerebellaris posterior) (рис. 48) несет импульсы от рецепторов, расположенных в мышцах, сухожилиях, суставных капсулах, связках в мозжечок. Тела первых нейронов (псевдоуниполярных клеток) расположены в спинномозговых узлах. Центральные отростки этих клеток в составе задних корешков спинномозговых нервов направляются в задний рог спинного мозга, где образуют синапсы с нейронами грудного ядра (столб Кларка), лежащего в медиальной части основания заднего рога (вторые нейроны). Аксоны вторых нейронов проходят в задней части бокового

Рис. 48. Задний спинеомозжечковый проводящий путь:

1 - поперечный разрез спинного мозга; 2 - поперечный разрез продолговатого мозга; 3 - кора мозжечка; 4 - зубчатое ядро; 5 - шаровидное ядро; 6 - синапс в коре червя мозжечка; 7 - нижняя мозжечковая ножка; 8 - дорсальный (задний) спинномозжечковый путь; 9 - спинномозговой узел

канатика спинного мозга своей стороны, поднимаются вверх и через нижнюю мозжечковую ножку направляются в мозжечок, где образуют синапсы с клетками коры червя мозжечка (задне-нижние отделы).

Передний спинномозжечковый проводящий путь (пучок Говерса) (tractus spinocerebellaris anterior) (рис. 49) также несет импульсы от рецепторов, расположенных в мышцах, сухожилиях, суставных капсулах, в мозжечок. Эти импульсы по волокнам спинномозговых нервов, являющихся периферическими отростками псевдоуниполярных клеток спинномозговых узлов (первые нейроны), направляются в задний рог, где образуют синапсы с нейронами центрального промежуточного (серого) вещества спинного мозга (вторые нейроны). Аксоны этих волокон переходят через переднюю серую спайку на противоположную сторону в переднюю часть бокового канатика спинного мозга и поднимаются вверх. На уровне перешейка ромбовидного мозга эти волокна образуют второй перекрест, возвращаются на свою сторону и через верхнюю мозжечковую ножку входят в мозжечок к клеткам передне-верхних отделов коры червя

Рис. 49. Передний спинномозжечковый проводящий путь: 1 - поперечный разрез спинного мозга; 2 - передний спинномозжечковый путь; 3 - поперечный разрез продолговатого мозга; 4 - синапс в коре червя мозжечка; 5 - шаровидное ядро; 6 - кора мозжечка; 7 - зубчатое ядро; 8 - спинномозговой узел

мозжечка. Таким образом, передний спинномозжечковый путь, сложный и дважды перекрещенный, возвращается на ту же сторону, на которой возникли проприоцептивные импульсы. Проприоцептивные импульсы, поступившие в кору червя по спинномозжечковым проприоцептивным путям, передаются в красные ядра и через зубчатое ядро в кору большого мозга (в постцентральную извилину) по мозжечково-таламическому и мозжечково-покрышечному путям (рис. 50).

Можно проследить системы волокон, по которым импульс из коры червя достигает красного ядра, полушария мозжечка и даже вышележащих отделов мозга - коры полушарий большого мозга. Из коры червя через пробковидное и шаровидное ядра импульс через верхнюю мозжечковую ножку направляется к красному ядру противоположной стороны (мозжечково-покрышечный путь). Кора червя связана ассоциативными волокнами с корой полушария мозжечка, откуда импульсы поступают в зубчатое ядро мозжечка.

С развитием высших центров чувствительности и произвольных движений в коре полушарий большого мозга возникли также связи мозжечка с корой, осуществляющиеся через таламус. Таким образом, из зубчатого ядра аксоны его клеток через верхнюю мозжечковую ножку выходят в покрышку моста, переходят на противоположную сторону и направляются к таламусу. Переключившись в таламусе на следующий нейрон, импульс следует в кору большого мозга, в постцентральную извилину.

Интероцептивные проводящие пути проводят импульсы от внутренних органов, сосудов, тканей организма. Их механо-, баро-, хеморецепторы воспринимают информацию о состоянии гомеостаза (интенсивности обменных процессов, химическом составе тканевой жидкости и крови, давлении в сосудах и т. д.).

В кору полушарий большого мозга поступают импульсы по прямым восходящим чувствительным путям и из подкорковых центров.

Из коры полушарий большого мозга и подкорковых центров (из ядер ствола мозга) берут начало нисходящие пути, управляющие двигательными функциями организма (произвольными движениями).

Нисходящие двигательные проводящие пути проводят импульсы к нижележащим отделам центральной нервной системы - к ядрам мозгового ствола и к двигательным ядрам передних рогов спинного мозга. Эти пути подразделяются на пирамидные и экстрапирамидные. Пирамидные проводящие пути являются главными двигательными путями.

Рис. 50. Мозжечково-таламический и мозжечково-покрышечный проводящие

1 - кора полушарий большого мозга; 2 - таламус; 3 - поперечный разрез среднего мозга; 4 - красное ядро; 5 - мозжечково-таламический путь; 6 - мозжечково-покрышечный путь; 7 - шаровидное ядро мозжечка; 8 - кора мозжечка; 9 - зубчатое ядро; 10 - пробковидное ядро

Через подконтрольные сознанию двигательные ядра головного и спинного мозга они несут импульсы из коры большого мозга к скелетным мышцам головы, шеи, туловища, конечностей. несут импульсы от подкорковых центров и различных отделов коры также к двигательным и другим ядрам черепных и спинномозговых нервов.

Главный двигательный, или пирамидный, проводящий путь представляет собой систему нервных волокон, по которым произвольные двигательные импульсы от пирамидной формы невроцитов (пирамидных клеток Беца), расположенных в коре предцентральной извилины (V слой), направляются к двигательным ядрам черепных нервов и к передним рогам спинного мозга, а от них к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь делится на корково-ядерный путь, идущий к ядрам черепных нервов, и корково-спинномозговой путь. В последнем выделяют латеральный и передний корково-спинномозговые (пирамидные) проводящие пути, идущие к ядрам передних рогов спинного мозга (рис. 51).

Корково-ядерный проводящий путь (tractus corticonuclearis) представляет собой пучок аксонов гигантопирамидных клеток, залегающих в нижней трети предцентральной извилины. Аксоны этих клеток (первый нейрон) проходят через колено внутренней капсулы, основание ножки мозга. Затем волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов: III и IV - в среднем мозге; V, VI, VII - в мосту; IX, X, XI и XII - в продолговатом мозге, где и заканчиваются синапсами на их нейронах (вторые нейроны). Аксоны двигательных нейронов ядер черепных нервов выходят из головного мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи. Они осуществляют управление осознанными движениями мышц головы и шеи.

Латеральный и передний корково-спинномозговые (пирамидные) проводящие пути (tractus corticospinales (pyramidales) anterior et lateralis) управляют осознанными движениями мышц туловища и конечностей. Они начинаются от пирамидной формы невроцитов (клеток Беца), расположенных в V слое коры средней и верхней третей предцентральной извилины (первые нейроны). Аксоны этих клеток направляются к внутренней капсуле, проходят через переднюю часть ее задней ножки, позади волокон корково-ядерного пути. Затем волокна через основание ножки мозга (латеральнее волокон корково-ядерного пути) переходят

Рис. 51. Схема пирамидных проводящих путей:

1 - предцентральная извилина; 2 - таламус; 3 - корково-ядерный путь; 4 - поперечный разрез среднего мозга; 5 - поперечный разрез моста; 6 - поперечный разрез продолговатого мозга; 7 - перекрест пирамид; 8 - латеральный корково-спинномозговой путь; 9 - поперечный разрез спинного мозга; 10 - передний корковоспинномозговой путь. Стрелками показано направление движения нервных импульсов

через мост в пирамиду продолговатого мозга. На границе продолговатого мозга со спинным часть волокон корково-спинномозгового пути переходит на противоположную сторону на границе продолговатого мозга со спинным. Затем волокна продолжаются в боковой канатик спинного мозга (латеральный корково-спинномозговой проводящий путь) и постепенно заканчиваются в передних рогах спинного мозга синапсами на двигательных клетках (корешковых нейроцитах) передних рогов (второй нейрон).

Волокна корково-спинномозгового проводящего пути, не переходящие на противоположную сторону на границе продолговатого мозга со спинным, спускаются вниз в составе переднего канатика спинного мозга, образуя передний корково-спинномозговой проводящий путь. Эти волокна посегментно переходят на противоположную сторону через белую спайку спинного мозга и заканчиваются синапсами на двигательных (корешковых) невроцитах переднего рога противоположной стороны спинного мозга (вторые нейроны). Аксоны клеток передних рогов выходят из спинного мозга в составе передних корешков и, являясь частью спинномозговых нервов, иннервируют скелетные мышцы. Итак, все пирамидные проводящие пути являются перекрещенными. Поэтому при одностороннем повреждении спинного мозга или головного мозга развивается паралич мышц противоположной стороны, которые иннервируются из сегментов, расположенных ниже зоны повреждения.

Экстрапирамидные проводящие пути имеют связи с ядрами ствола мозга и с корой полушарий большого мозга, которая управляет экстрапирамидной системой. Влияние коры большого мозга осуществляется через мозжечок, красные ядра, ретикулярную формацию, связанную с таламусом и полосатым телом, через вестибулярные ядра. Одной из функций красных ядер является поддержание мышечного тонуса, необходимого для непроизвольного удержания тела в равновесии. Красные ядра, в свою очередь, получают импульсы из коры полушарий большого мозга, из мозжечка. От красного ядра нервные импульсы направляются к двигательным ядрам передних рогов спинного мозга (красноядерноспинномозговой путь) (рис. 52).

Красноядерно-спинномозговой путь (tractus rubrospinalis) поддерживает тонус скелетных мышц и управляет автоматическими привычными движениями. Первые нейроны этого пути залегают в красном ядре среднего мозга. Их аксоны переходят на противоположную сторону в среднем мозге (перекрест Фореля), проходят через покрышку ножек мозга,

Рис. 52. Красноядерно-спинномозговой проводящий путь (схема): 1 - разрез среднего мозга; 2 - красное ядро; 3 - красноядерно-спинномозговой путь; 4 - кора мозжечка; 5 - зубчатое ядро мозжечка; 6 - разрез продолговатого мозга; 7 - разрез спинного мозга. Стрелками показано направление движения

нервных импульсов

покрышку моста и продолговатый мозг. Далее аксоны следуют в составе бокового канатика спинного мозга противоположной стороны. Волокна красноядерно-спинномозгового пути образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны). Аксоны этих клеток участвуют в формировании передних корешков спинномозговых нервов.

Преддверно-спинномозговой проводящий путь (tr a ctus vestibulospinalis, или пучок Левенталя), поддерживает равновесие тела и головы в пространстве, обеспечивает установочные реакции тела при нарушении равновесия. Первые нейроны этого пути залегают в латеральном ядре (Дейтерса) и нижнем вестибулярном ядре продолговатого мозга и моста (преддверноулитковый нерв). Эти ядра связаны с мозжечком и задним продольным пучком. Аксоны нейронов вестибулярных ядер проходят в продолговатом мозге, затем в составе переднего канатика спинного мозга на границе с боковым канатиком (своей стороны). Волокна этого пути образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны), аксоны которых участвуют в формировании передних (двигательных) корешков спинно-мозговых нервов. Задний продольный пучок (fasciculus longitudinalis post e rior), в свою очередь, связан с ядрами черепных нервов. Это обеспечивает сохранение положения глазного яблока при движениях головы и шеи.

Ретикуло-спинномозговой путь (tractus reticulospinalis) поддерживает тонус скелетных мышц, регулирует состояние спинномозговых вегетативных центров. Первые нейроны этого пути залегают в ретикулярной формации ствола мозга (промежуточное ядро Кахаля, ядро эпиталамической (задней) спайки Даркшевича и др.). Аксоны нейронов этих ядер проходят через средний мозг, мост, продолговатый мозг. Аксоны нейронов промежуточного ядра (Кахаля) не перекрещиваются, они проходят в составе переднего канатика спинного мозга своей стороны. Аксоны клеток ядра эпиталамической спайки (Даршкевича) проходят на противоположную сторону через эпиталамическую (заднюю) спайку и идут в составе переднего канатика противоположной стороны. Волокна образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны).

Покрышечно-спинальный путь (tractus tectospinalis) осуществляет связи четверохолмия со спинным мозгом, передает влияния подкорковых центров зрения и слуха на тонус скелетной мускулатуры, участвует в формировании защитных рефлексов. Первые нейроны лежат в ядрах верхних

и нижних холмиков четверохолмия среднего мозга. Аксоны этих клеток проходят через мост, продолговатый мозг, переходят на противоположную сторону под водопроводом мозга, образуя фонтановидный, или мейнертовский, перекрест. Далее нервные волокна проходят в составе переднего канатика спинного мозга противоположной стороны. Волокна образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны). Их аксоны участвуют в формировании передних (двигательных) корешков спинномозговых нервов.

Корково-мозжечковый проводящий путь (tractus corticocerebellaris) осуществляет управление функциями мозжечка, участвующего в координации движений головы, туловища и конечностей. Первые нейроны этого пути залегают в коре лобной, височной, теменной и затылочной долей большого мозга. Аксоны нейронов лобной доли (лобно-мостовые волокна - пучок Арнольда) направляются во внутреннюю капсулу и проходят через ее переднюю ножку. Аксоны нейронов височной, теменной и затылочной долей (теменно-височно-затылочно-мостовые волокна - пучок Тюрка) проходят в составе лучистого венца, затем через заднюю ножку внутренней капсулы. Все волокна следуют через основание ножки мозга в мост, где заканчиваются синапсами на нейронах собственных ядер моста своей стороны (вторые нейроны). Аксоны этих клеток переходят на противоположную сторону в виде поперечных волокон моста, затем в составе средней мозжечковой ножки следуют в полушарие мозжечка противоположной стороны.

Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, замыкают сложные рефлекторные дуги в теле человека. Одни рефлекторные пути замыкаются на ядрах, лежащих в мозговом стволе и обеспечивающих функции с определенным автоматизмом, без участия сознания, хотя и под контролем полушарий большого мозга. Другие рефлекторные пути замыкаются с участием функций коры полушарий большого мозга, высших отделов центральной нервной системы и обеспечивают произвольные действия органов аппарата движения.

Чтобы контролировать работу всего организма или каждого отдельного органа, моторного аппарата, требуются проводящие пути спинного мозга. Их основной задачей является доставка импульсов, посылаемых человеческим «компьютером» к телу, конечностям. Любой сбой в процессе отправки или принятия импульсов рефлекторной или симпатической природы чреват серьезнейшими патологиями здоровья и всей жизнедеятельности.

Что такое проводящие пути в спинном и головном мозге?

Проводящие пути головного и спинного мозга выступают в роли комплекса нейронных структур. В ходе их работы реализуется посыл импульсных толчков в конкретные области серого вещества. По сути, импульсы представляют собой сигналы, побуждающие тело к действию по призыву мозга. Несколько групп нервных волокон, различных в соответствии с функциональными особенностями, представляют собой проводящие пути спинного мозга. К ним относят:

  • проекционные нервные окончания;
  • ассоциативные пути;
  • комиссуральные связующие корешки.

Кроме того, работоспособность спинномозговых проводников обуславливает необходимость выделения следующей классификации, согласно которой они могут быть:

  • моторными;
  • сенсорными.

Чувствительное восприятие и двигательная активность человека

Сенсорные или чувствительные проводящие пути спинного и головного мозга служат незаменимым элементом контакта между этими двумя сложнейшими системами в организме. Они же отправляют импульсивный посыл каждому органу, мышечным волокнам, рукам и ногам. Мгновенный посыл импульсного сигнала - основополагающий момент в осуществлении человеком скоординированных согласованных движений тела, выполняемых без приложения каких-либо осознанных усилий. Импульсы, посылаемые мозгом, нервные волокна могут распознавать через осязание, чувство боли, температурный режим тела, суставно-мышечную моторику.

Двигательные проводящие пути спинного головного мозга предопределяют качество рефлекторной реакции человека. Обеспечивая посыл импульсных сигналов от головы к рефлекторным окончаниям хребта и мышечному аппарату, они наделяют человека способностью самоконтроля моторики - координации. Также на этих проводящих путях лежит ответственность за передачу побуждающих толчков в сторону зрительных и слуховых органов.

Где находятся проводящие пути?

Ознакомившись с анатомическими отличительными чертами спинного мозга, необходимо разобраться с тем, где те самые проводящие пути спинного мозга располагаются, ведь под данным термином предполагается множество нервных материй и волокон. Размещаются они в специфических жизненно необходимых веществах: сером и белом. Соединяя между собой спинномозговые рога и кору левого и правого полушарий, проводящие пути посредством нейронной связи обеспечивают контакт между двумя данными отделами.

Функции проводников главнейших человеческих органов заключаются в реализации предназначенных задач с помощью конкретных отделов. В частности, проводящие пути спинного мозга находятся в пределах верхних позвонков и головы, более подробно описать это можно таким образом:

  1. Ассоциативные связи - своеобразные «мосты», которые связывают области между корой полушарий и ядрами спинномозгового вещества. В их структуре встречаются волокна различных размеров. Относительно короткие не выходят за пределы полушария или его мозговой доли. Более длинные нейроны передают импульсы, проходящие через некоторое расстояние к серому веществу.
  2. Комиссуральные пути представляют собой тело, обладающее мозолистой структурой и выполняющее задачу соединения новообразованных отделов в голове и спинном мозге. Волокна от главной доли распускаются лучеобразно, помещаются они в белой спинномозговой субстанции.
  3. Проекционные нервные волокна находятся непосредственно в спинном мозге. Их работоспособность дает возможность импульсам в сжатые сроки возникать в полушариях и налаживать связь с внутренними органами. Разделение на восходящие и нисходящие проводящие пути спинного мозга касается именно волокон данного типа.

Система восходящих и нисходящих проводников

Восходящие проводящие пути спинного мозга восполняют потребность человека в зрении, слухе, моторных функциях и их контакте с важными системами организма. Рецепторы данных связей находятся в пространстве между гипоталамусом и первыми сегментами позвоночного столба. Восходящие пути спинного мозга способны принять и отправить далее импульсный толчок, поступающий с поверхности верхних слоев эпидермиса и слизистых оболочек, органов жизнеобеспечения.

В свою очередь, нисходящие проводящие пути спинного мозга включают в свою систему следующие элементы:

  • Нейрон пирамидный (берет свое начало в коре полушарий, затем устремляется вниз, минуя мозговой ствол; каждый его пучок располагается на спинномозговых рогах).
  • Нейрон центральный (является моторным, связывающим передние рога и кору полушарий с рефлекторными корешками; вместе с аксонами в цепочку входят и элементы периферической нервной системы).
  • Волокна спиномозжечковые (проводники нижних конечностей и столба спинного мозга, включая клиновидные и тонкие связки).

Обычному человеку, не специализирующемуся в области нейрохирургии, достаточно сложно разобраться в системе, которую представляют сложные проводящие пути спинного мозга. Анатомия этого отдела действительно является запутанной структурой, состоящей из нейронных импульсных передач. Но именно благодаря ей организм человека существует как единое целое. За счет двойного направления, по которому действуют проводящие пути спинного мозга, обеспечивается моментальная передача импульсов, которые несут в себе информацию от управляемых органов.

Проводники глубокой сенсорики

Структура нервных связок, действующая в восходящем направлении, является многосоставной. Данные проводящие пути спинного мозга образованы несколькими элементами:

  • пучок Бурдаха и пучок Голля (представляют собой пути глубокой чувствительности, расположенные с задней стороны позвоночного столба);
  • спиноталамический пучок (находится сбоку спинномозгового столба);
  • пучок Говерса и пучок Флексига (мозжечковые пути, расположенные по бокам столба).

Внутри межпозвоночных узлов расположены глубокой степени чувствительности. Отростки, локализованные на периферических участках, завершаются в наиболее подходящих мышечных тканях, сухожилиях, костно-хрящевых волокнах и их рецепторах.

В свою очередь, центровые отростки клеток, располагаясь позади, держат направление к спинному мозгу. Проводя глубокую чувствительность, задние нервные корешки не углубляются в серое вещество, образуя лишь задние спинномозговые столбы.

Там, где подобные волокна входят в спинной мозг, происходит их разделение на короткие и длинные. Далее проводящие пути спинного и головного мозга отправляются к полушариям, где происходит их кардинальное перераспределение. Основная их часть остается в зонах передних и задних центральных извилин, а также в области темени.

Отсюда следует, что данные пути проводят чувствительность, благодаря которой человек может ощутить, как работает его мышечно-суставный аппарат, почувствовать любое вибрационное движение или тактильное прикосновение. Пучок Голля, находящийся прямо по центру спинного мозга, распределяет чувствительность от нижнего отдела туловища. Пучок Бурдаха расположен выше и служит проводником чувствительности верхних конечностей и соответствующего отдела туловища.

Как узнать о степени сенсорики?

Определить степень глубокой чувствительности можно с помощью нескольких простых тестов. Для их выполнения больному закрывают глаза. Его задачей является определение конкретного направления, в котором врач или исследователь делает движения пассивного характера в суставах пальцев, рук или ног. Желательно также описать подробно позу тела или положение, которое приняли его конечности.

При помощи камертона на предмет вибрационной чувствительности можно исследовать проводящие пути спинного мозга. Функции этого прибора помогут точно определить время, на протяжении которого пациент четко ощущает вибрирование. Для этого берут прибор и нажимают на него, чтобы появился звук. В этот момент необходимо выставить на любой костный выступ на теле. В случае когда такая чувствительность выпадает раньше, чем в других случаях, можно предположить, что поражены задние столбы.

Тест на чувство локализации подразумевает, что больной, закрыв глаза, точно указывает на место, в котором за несколько секунд перед этим к нему прикоснулся исследователь. Удовлетворительным показатель считается тогда, если пациентом допущена погрешность в рамках одного сантиметра.

Сенсорная восприимчивость кожных покровов

Строение проводящих путей спинного мозга позволяет на периферическом уровне определить степень кожной чувствительности. Дело в том, что нервные отростки протонейрона участвуют в кожных рецепторах. Отростки, расположенные по центру в составе задних отростков, устремляются прямо к спинному мозгу, вследствие чего там образуется зона Лисауэра.

Так же, как и путь глубокой чувствительности, кожный складывается из нескольких последовательно объединенных нервных клеток. В сравнении со спиноталамическим пучком нервных волокон информационные импульсы, передаваемые от нижних конечностей или нижнего отдела туловища, находятся немного выше и посередине.

Кожная чувствительность различается по критериям, исходя из природы раздражителя. Она бывает:

  • температурной;
  • тепловой;
  • болевой;
  • тактильной.

При этом последний вид кожной чувствительности, как правило, передается проводниками глубокой чувствительности.

Как узнать о болевом пороге и различии температуры?

Чтобы определить уровень болевых ощущений, врачи применяют метод укалывания. В самых неожиданных местах для пациента врач наносит несколько легких уколов с помощью булавки. Глаза больного должны быть закрыты, т.к. видеть, что происходит, он не должен.

Порог температурной чувствительности определить несложно. При нормальном состоянии человек испытывает различные ощущения при температурах, разница которых составляла порядка 1-2°. Для выявления патологического дефекта в виде нарушения кожной чувствительности врачи используют специальный аппарат - термоэстезиометр. Если же его нет, можно провести тест на теплую и горячую воду.

Патологии, связанные с нарушением проводящих путей

В восходящем направлении проводящие пути спинного мозга образованы в таком положении, благодаря которому человек может ощущать тактильные прикосновения. Для исследования необходимо взять что-то мягкое, нежное и в ритмичном порядке провести тонкое обследование на выявление степени чувствительности, а также проверку реакции волосков, щетинок и т.д.

Расстройствами, вызванными кожной чувствительностью, на сегодняшний день считают такие:

  1. Анестезия - полная утрата чувствительности кожи на конкретной поверхностной области тела. При нарушении болевой чувствительности возникает анальгезия, при температурной - терманестезия.
  2. Гиперестезия - обратное анестезии явление, возникающее при понижении порога возбуждения, при его повышении появляется гипальгезия.
  3. Неправильное восприятие раздражающих факторов (например, пациент путает холодное и теплое) называется дизестезией.
  4. Парестезия - это нарушение, проявлений которого может быть огромное множество, начиная от ползающих мурашек, чувства от удара током и его прохождения через весь организм.
  5. Гиперпатия имеет самую яркую выраженность. Ей свойственно также поражение зрительного бугра, повышение порога возбудимости, невозможность локально определить раздражитель, тяжелая психоэмоциональная окраска всего происходящего и слишком резкая двигательная реакция.

Особенности структуры нисходящих проводников

Нисходящие проводящие пути головного и спинного мозга включают в себя несколько связок, среди которых:

  • пирамидная;
  • рубро-спинальная;
  • вестибуло-спинальная;
  • ретикуло-спинальная;
  • задняя продольная.

Все вышеуказанные элементы - двигательные проводящие пути спинного мозга, которые являются составляющими нервных связок в нисходящем направлении.

Так называемый начинается от огромнейших одноименных клеток, находящихся в верхнем слое полушария мозга, в основном в зоне центральной извилины. Здесь же расположен проводящий путь переднего канатика спинного мозга - этот важный элемент системы направлен вниз и проходит через несколько отделов задней бедренной капсулы. В точке пересечения продолговатого и спинного мозга можно обнаружить неполный перекрест, образующий прямой пирамидный пучок.

В покрышке среднего мозга присутствует проводящий рубро-спинальный путь. Начало он берет от красных ядер. При выходе его волокна перекрещиваются и проходят в спинной мозг через варолиев и Рубро-спинальный путь позволяет проводить импульсы от мозжечка и подкорковых узлов.

Проводящие пути спинного мозга начинаются в ядре Дейтерса. Располагаясь в стволе мозга, вестибуло-спинальный путь продолжается в спинном и оканчивается в его передних рогах. От этого проводника зависит прохождение импульсов от вестибулярного аппарата к периферической системы.

В клетках сетчатой формации заднего мозга начинается ретикуло-спинальный путь, который в белом веществе спинного мозга рассеян отдельными пучками преимущественно сбоку и спереди. По сути, это главный связующий элемент между рефлекторным мозговым центром и опорно-двигательным аппаратом.

Задняя продольная связка также участвует в соединении двигательных структур со стволом головного мозга. От нее зависит работа глазодвигательных ядер и вестибулярного аппарата в целом. Задний продольный пучок находится в шейном отделе позвоночника.

Последствия заболеваний спинного мозга

Таким образом, проводящие пути спинного мозга являются жизненно важными соединительными элементами, предоставляющими человеку возможность движения и чувствительности. Нейрофизиология данных путей связана с особенностями строения позвоночника. Известно, что структура спинного мозга, окруженного мышечными волокнами, имеет цилиндрическую форму. Внутри веществ спинного мозгового ствола ассоциативные и двигательные рефлекторные пути контролируют функциональность всех систем организма.

При возникновении заболевания спинного мозга, механического повреждения или пороков развития проводимость между двумя основными центрами может существенно снизиться. Нарушения проводящих путей угрожают человеку полным прекращением двигательной активности и потерей сенсорного восприятия.

Основной причиной отсутствия импульсной проводимости является отмирание нервных окончаний. Самая сложная степень нарушения проводимости между головным и спинным мозгом заключается в парализации и отсутствиия чувствительности в конечностях. Затем могут наблюдаться проблемы в работе внутренних органов, связанных с мозгом поврежденной нейронной связкой. Например, нарушения в нижнем отделе спинномозгового ствола несут за собой неконтролируемое человеком мочеиспускание и процессы дефекации.

Лечат ли болезни спинного мозга и проводящих путей?

Только появившиеся дегенеративные изменения практически моментально отражаются на проводниковой деятельности спинного мозга. Угнетение рефлексов ведет к явно выраженным патологическим переменам, обусловленным гибелью нейронных волокон. Полностью восстановить нарушенные участки проводимости невозможно. Заболевание наступает стремительно и прогрессирует молниеносно, поэтому избежать грубых нарушений проводимости можно только в том случае, если своевременно начать медикаментозное лечение. Чем раньше это будет сделано, тем больше появится шансов на прекращение патологического развития.

Непроводимость проходящих путей спинного мозга нуждается в лечении, первоочередной задачей которого станет остановка процессов отмирания нервных окончаний. Добиться этого можно только в случае пресечения факторов, повлиявших на возникновение заболевания. Только после этого можно приступать к терапии с целью максимально возможного восстановления чувствительности и двигательных функций.

Лечение медикаментами направлено на прекращение процесса отмирания мозговых клеток. Их задачей является также восстановление нарушенной кровоподачи к поврежденному участку спинного мозга. В ходе лечения врачи учитывают возрастные особенности, характер и степень тяжести повреждения и прогрессирования болезни. В терапии проводящих путей важно поддерживать постоянную стимуляцию нервных волокон с помощью электрических импульсов. Это позволит сохранить удовлетворительный мышечный тонус.

Хирургическое вмешательство проводят с целью восстановления проводимости спиного мозга, поэтому проводят его по двум направлениям:

  1. Пресечение причин парализации деятельности нейронных связей.
  2. Стимулирование спинномозгового ствола для скорейшего приобретения утраченных функций.

Предшествовать операции должно полное медицинское обследование всего организма. Это позволит определить локализацию процессов дегенерации нервных волокон. В случае тяжелейших травм позвоночника необходимо сначала устранить причины компрессии.

В белом веществе ствола головного мозга и спинном мозге располагаются проводники восходящего и нисходящего направлений Нисходящие пути проводят к рефлекторным аппаратам спинного мозга двигательные импульсы из коры головного мозга (пирамидный путь), а также импульсы, способствующие двигательного акта (экстрапирамидные пути) из различных отдлов подкорковых образований и ствола головного мозга. Нисходящие двигательные проводники заканчиваются на периферические мотонейронах спинного мозга посегментно. Вышележащие отделы центральной нервной системы оказывают существенное влияние на рефлекторную деятельность спинного мозга. Они затораживают рефлекторные механизмы собственного аппарата спинного мозга. Так, при патологическом выключении пирамидных путей собственные рефлекторные механизмы спинного мозга растормаживаются. При этом усиливаются рефлексы спинного мозга и тонус мышц. Кроме того, выявляются защитные рефлексы и такие, которые в норме наблюдаются только у новорожденных и детей первых месяцев жизни.

Восходящие пути передают из спинного мозга чувствительные импульсы с периферии (с кожи, слизистых оболочек, мыши, суставов и т.д.) к вышележащим отделам головного мозга. В конце концов эти импульсы достигают коры головного мозга. С периферии импульсы приходят в кору головного мозга двумя путями: и так называемым специфическим системам проводников (через восходящий проводник и зрительный бугор) и по неспецифической системе - через ретикулярную формацию (сетевидное образование) ствола головного мозга. Все чувствительные проводники от дают коллатерали ретикулярной формации. Ретикулярная формация активирует кору головного мозга, распространяя импульсы по разным отделам коры. Ее влияние на кору оказывается диффузным, тогда как специфические проводники посылают импульсы лишь в определенные проекционные зоны. Кроме того, ретикулярная формация участвует в регуляции разнообразных вегетативно-висцеральных и сенсомоторных функций организма. Таким образом, вышележащие отделы мозга находятся под влиянием спинного мозга.

НИСХОДЯЩИЕ ПУТИ

Корково-спинальный (пирамидный) путь проводит импульсы произвольных движений от двигательной зоны коры головного мозга в спинной мозг. Во внутренней капсуле он расположен в передних 2/з заднего бедра и в колене (волокна пирамидного пути к двигательным ядрам черепных нервов). На границе со спинным мозгом пирамидный путь подвергается неполному перекресту. Более мощный перекрещенный путь спускается в спинной мозг по боковому канатику; неперекрещенный путь проходит в передний столб спинного мозга. Волокна перекрещенного пути иннервируют верхние и нижние конечности, волокна неперекрещенного пути - мышцы шеи, туловища, промежности. Волокна обоих пучков заканчиваются посегментно в спинном мозге, входя в контакт с мотонейронами передних рогов спинного мозга. Волокна пирамидного пути к двигательным ядрам черепно-мозговых нервов перекрещиваются при подходе непосредственно к ядрам (рис. 31).

Руброспинальный путь идет от красных ядер среднего мозга к мотонейронам спинного мозга. Под красными ядрами совершает перекрест, проходит ствол мозга, по спинному мозгу спускается (рядом с пирамидным путем) в боковых канатиках. Имеет важное значение для экстрапирамидного обеспечения движений.

Корково-мостомозжечковые пути (лобно-мостомозжечковый и затылочно-височно-мостомозжечковый) проходят из коры головного мозга к собственным ядрам моста через внутреннюю капсулу. т ядер моста пучки волокон направляются к коре мозжечка противоположной стороны. Проводят импульсы от коры головного мозга после обработки всей поступающей в нее аффективной информации. Эти импульсы корригируют деятельность экстрапирамидной системы (в частности, мозжечка).

Задний продольный пучок начинается от клеток ядра Даркшевича, лежащего кпереди от ядер глазодвигательного нерва. Заканчивается посегментно у мотонейронов спинного мозга. Имеет связи со всеми ядрами глазодвигательных нервов и с ядрами вестибулярного нерва. В стволе головного мозга располагается близко к средней линии, в спинном мозге проходит в передних столбах.

1 - передняя центральная извилина коры больших полушарий; 2 - зрительный бугор (таламус); 3 - заднее бедро внутренней капсулы; 4 - колено внутренней капсулы; 5 - переднее бедро внутренней капсулы; 6 - головка хвостатого ядра; 7 -пирамидный (корково-спинномозговой) путь; 8 - средний мозг; 9 - корково-ядерный путь; 10 - мост; 11 - продолговатый мозг; 12 - боковой (перекрещенный) корково-спинномозговой путь; 13 - передний (неперекрещенный) корково-спинномозговой путь; 14 - двигательные ядра передних рогов спинного мозга; 15 - мышца; 16 - перекрест пирамид; 17 - пирамида; 18 - чечевицеобразное ядро; 19 - ограда

При помощи заднего продольного пучка обусловливается одновременность поворота глазных яблок и головы, содружественность и одновременность движений глазных яблок. Связь заднего продольного пучка с вестибулярным аппаратом, со стриопаллидарной системой и со спинным мозгом делает его важным проводником экстрапирамидного влияния на спинной мозг.

Тектоспинальный путь начинается от ядер крыши четверохолмия и заканчивается у клеток передних рогов шейных сегментов.

Обеспечивает связи экстрапирамидной системы, а также подкорковьгх центров зрения и слуха с шейной мускулатурой. Имеет большое значение в образовании ориентировочных рефлексов.

Вестибулоспинальный путь идет от ядер вестибулярного нерва.

Заканчивается у мотонейронов передних рогов спинного мозга.

Проходит в передних отделах бокового канатика спинного мозга.

Ретикулоспинальный путь идет от ретикулярной формации ствола головного мозга к мотонейронам спинного мозга.

Вестибулоспинальный и ретикулоспинальный пути - проводники экстрапирамидного влияния на спинной мозг.

ВОСХОДЯЩИЕ ПУТИ

К восходящим путям спинного мозга и ствола головного мозга относятся чувствительные (афферентные) пути (рис. 32).

Спиноталамический путь проводит болевую, температурную и частично тактильную чувствительность. Рецепторный аппарат (экстерорецепторы) расположен в коже и слизистых оболочках. Импульсы от рецепторов идут по спинномозговым нервам в тело расположенного в межпозвоночном узле первого чувствительного нейрона. Центральные отростки от клеток узла вступают в задний рог спинного мозга, где лежит второй нейрон. Нервные волокна от клеток заднего рога через переднюю серую спайку спинного мозга переходят на противоположную сторону и по боковому столбу спинного мозга поднимаются в продолговатый мозг, затем, не прерываясь, проходят через мост и ножки мозга в зрительный бугор, где находится третий нейрон. От зрительного бугра волокна идут через внутреннюю капсулу в кору головного мозга - в ее заднецентральную извилину и в теменную долю. Бульботаламический путь - проводник суставно-мышечной, такильной, вибрационной чувствительности, чувства давления, тяжести. Рецепторы (проприорецепторы) расположены в мышцах, суставах, связках и др. По спинномозговым нервам импульсы от рецепторов передаются в тело первого нейрона (в межпозвоночном узле). Волокна от первых нейронов через задний корешок вступают в задние канатики спинного мозга. Они составляют пучки Голля (волокна от нижних конечностей) и Бурдаха (волокна от верхних конечностей). Волокна этих проводников заканчива ются в специальных ядрах продолговатого мозга. По выходе из ядер эти волокна делают перекрест и соединяются с волокнами спиноталамического пути. Их общий путь называется медиальной (внутренней) петлей (общий путь всех видов чувствительности).

1 - передний спиноталамический путь; 2 - медиальная (внутренняя) петля; 3 - боковой спиноталамический путь; 4- зрительный бугор (таламус); 5- мозжечок; 6 - задний спиномозжечковый путь (пучок Флексига); 7 - передний спиномозжечковый путь (пучок Говерса); 8- ядра тонкого и клиновидного пучков; 9 - рецепторы: А - глубокой чувствительности (рецепторы мышц, сухожилий, суставов); Б - вибрационной, тактильной чувствительности, чувства, положения; В - осязания и давления; Г - болевой и температурной чувствительности; 10 - межпозвоночный узел; 11 - задние рога спинного мозга

Медиальная петля заканчивается в зрительном бугре.

Петля тройничного нерва присоединяется к внутренней петле, подходя к ней с другой стороны.

Боковая, или латеральная, петля - слуховой путь ствола мозга.

Заканчивается во внутреннем коленчатом теле и в заднем бугре четверохолмия.

Спиномозжечковые пути (передний и задний) несут проприонептивную информацию в мозжечок.

Передний спиномозжечковый путь (пучок Говерса) начинается на периферии в проприорецепторах. Первый нейрон, как обычно, находится в межпозвонковом ганглии. Волокна от него в составе заднего корешка вступают в задний рог. Там находится второй нейрон. Волокна от вторых нейронов выходят в боковой столб своей стороны, направляются вверх и в составе нижних ножек мозжечка достигают червя мозжечка.

Задний спиномозжечковый путь (пучок Флексига) имеет такое же начало. Волокна от клеток заднего рога вторых нейронов располагаются в боковом столбе спинного мозга и достигают червя мозжечка через верхние ножки мозжечка.

Таковы основные проводники спинного мозга, продолговатого мозга, моста и ножек мозга. Они обеспечивают связь различных отделов головного мозга со спинным мозгом (см. рис. 32).

В нервной системе нервные клетки не лежат изолированно. Они вступают в контакт друг с другом, образуя цепи нейронов - проводников импульсов. Длинный отросток одного нейрона - нейрит (аксон) вступает в контакт с короткими отростками (дендритами) или телом другого, следующего в цепи нейрона.

По цепям нейронов нервные импульсы движутся в строго определенном направлении, что обусловлено особенностями строения нервных клеток и синапсов («динамическая поляризация»). Одни цепи нейронов несут импульс в центростремительном направлении - от места возникновения на периферии (в коже, слизистых оболочках, органах, стенках сосудов) к ЦНС (спинному и головному мозгу). Первым в этой цепи является чувствительный (афферентный) нейрон, воспринимающий раздражение и трансформирующий его в нервный импульс. Другие цепи нейронов проводят импульс в центробежном направлении - от головного или спинного мозга на периферию, к рабочему органу. Нейрон, передающий импульс рабочему органу, является эфферентным.

Цепи нейронов в живом организме образуют рефлекторные дуги.

Рефлекторная дуга - это цепь нервных клеток, обязательно включающая первый - чувствительный и последний - двигательный (или секреторный) нейроны, по которым импульс движется от места возникновения к месту приложения (мышцы, железы и другие органы, ткани). Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сегмента спинного мозга. В трехнейронной рефлекторной дуге первый нейрон представлен чувствительной клеткой, по которой импульс от места возникновения в чувствительном нервном окончании (рецепторе), лежащем в коже или в других органах, движется вначале по периферическому отростку (в составе нерва). Затем импульс движется по центральному отростку в составе заднего корешка спинномозгового нерва, направляясь к одному из ядер заднего рога спинного мозга, или по чувствительным волокнам черепных нервов к соответствующим чувствительным ядрам. Здесь импульс передается следующему нейрону, отросток которого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот второй нейрон выполняет проводниковую (кондукторную) функцию. Он передает импульс от чувствительного (афферентного) нейрона к третьему - двигательному (эфферентному). Кондукторный нейрон является вставочным нейроном, так как находится между чувствительным нейроном, с одной стороны, и двигательным (или секреторным) - с другой. Тело третьего нейрона (эфферентного, эффекторного, двигательного) лежит в переднем роге спинного мозга, а его аксон - в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышцы).

С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многонейронные сложные рефлекторные дуги, в построении и функциях которых участвуют нервные клетки, расположенные в вышележащих сегментах спинного мозга, в ядрах мозгового ствола, полушарий и даже в коре большого мозга. Отростки нервных клеток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки (fasciculi).

Пучки нервных волокон, соединяющие функционально однородные или различные участки серого вещества в ЦНС, занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковый импульс, получили название проводящих путей.

В спинном и головном мозге по строению и функции выделяют три группы проводящих путей: ассоциативные, комиссуральные и проекционные.

Ассоциативные нервные волокна (neurofibrae associations) соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна (пути). Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга (внутридолевые пучки волокон). Некоторые ассоциативные волокна, соединяющие серое вещество соседних извилин, не выходят за пределы коры (интракортикальные). Они дугообразно изгибаются в виде буквы 0 и называются дугообразными волокнами большого мозга (fibrae arcuatae cerebri). Ассоциативные нервные волокна, выходящие в белое вещество полушария (за пределы коры), называют экстракортикальными.

Длинные ассоциативные волокна связывают участки серого вещества, далеко отстоящие друг от друга, принадлежащие различным долям (междолевые пучки волокон). Это хорошо выраженные пучки волокон, которые можно видеть на макропрепарате головного мозга. К длинным ассоциативным путям относятся следующие: верхний продольный пучок (fasciculus longitudinalis superior), который находится в верхней части белого вещества полушария большого мозга и соединяет кору лобной доли с теменной и затылочной; нижний продольный пучок (fasciculus longitudinalis inferior), лежащий в нижних отделах полушария и соединяющий кору височной доли с затылочной; крючков,идный пучок (fasciculus uncinatus), который, дугообразно изгибаясь впереди островка, соединяет кору в области лобного полюса с передней частью височной доли. В спинном мозге ассоциативные волокна соединяют клетки серого вещества, принадлежащего различным сегментам, и образуют передние, латеральные и задние собственные пучки (межсегментные пучки) (fasciculi proprii ventrales, s. anteriores lateralis, dorsrales, s. posteriores). Они располагаются непосредственно возле серого вещества. Короткие пучки связывают соседние сегменты, перекидываясь через 2-3 сегмента, длинные пучки соединяют далеко отстояшие друг от друга сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна (neurofibrae commissurales) соединяют серое вещество правого и левого полушарий, аналогичные центры правой и левой половин мозга с целью координации их функций. Комиссуральные волокна проходят из одного полушария в другое, образуя спайки (мозолистое тело, спайка свода, передняя спайка). В мозолистом теле, имеющемся только у млекопитающих, располагаются волокна, соединяющие новые, более молодые, отделы мозга, корковые центры правого и левого полушарий. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела (radiatio corporis callosi).

Комиссуральные волокна, идущие в колене и клюве мозолистого тела, соединяют друг с другом участки лобных долей правого и левого полушарий большого мозга. Загибаясь кпереди, пучки этих волокон как бы охватывают с двух сторон переднюю часть продольной щели большого мозга и образуют лобные щипцы (forceps frontalis). В стволе мозолистого тела проходят нервные волокна, соединяющие кору центральных извилин, теменных и височных долей двух полушарий большого мозга. Валик мозолистого тела состоит из комиссуральных волокон, которые соединяют кору затылочных и задние отделы теменных долей правого и левого полушарий большого мозга. Изгибаясь кзади, пучки этих волокон охватывают задние отделы продольной щели большого мозга и образуют затылочные щипцы (forceps occipitalis).

Комиссуральные волокна проходят в составе передней спайки мозга (commissura rostralis, s. anterior) и спайки свода (commissura fornicis). Большая часть комиссуральных волокон, входящих в состав передней спайки, - это пучки, соединяющие друг с другом переднемедиальные участки коры височных долей обоих полушарий в дополнение к волокнам мозолистого тела. В составе передней спайки находятся также слабовыраженные у человека пучки комиссуральных волокон, направляющиеся из области обонятельного треугольника одной стороны мозга в такую же область другой стороны. В спайке свода проходят комиссуральные волокна, которые соединяют участки коры правой и левой височных долей полушарий большого мозга, правого и левого гиппокампов.

Проекционные нервные волокна (neurofibrae proectiones) соединяют нижележащие отделы мозга (спинной мозг) с головным мозгом, а также ядра мозгового ствола с базальными ядрами (полосатым телом) и корой и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных волокон, достигающих коры большого мозга, картины внешнего мира как бы проецируются на кору как на экран, где происходят высший анализ поступивших сюда импульсов, сознательная их оценка. В группе проекционных путей выделяют восходящие и нисходящие системы волокон.

Восходящие проекционные пути (афферентные, чувствительные) несут в головной мозг, к его подкорковым и высшим центрам (к коре), импульсы, возникшие в результате воздействия на организм факторов внешней среды, в том числе и от органов чувств, а также импульсы от органов движения, внутренних органов, сосудов. По характеру проводимых импульсов восходящие проекционные пути подразделяются на три группы.

  1. Экстероцептивные пути (от лат. exter. externus - наружный, внешний) несут импульсы (болевые, температурные, осязания и давления), возникшие в результате воздействия внешней среды на кожные покровы, а также импульсы от высших органов чувств (органов зрения, слуха, вкуса, обоняния).
  2. Проприоцептивные пути (от лат. proprius - собственный) проводят импульсы от органов движения (от мышц, сухожилий, суставных капсул, связок), несут информацию о положении частей тела, о размахе движений.
  3. Интероцептивные пути (от лат. interior - внутренний) проводят импульсы от внутренних органов, сосудов, где хемо-, баро- и механорецепторы воспринимают состояние внутренней среды организма, интенсивность обмена веществ, химизм крови, тканевой жидкости, лимфы, давление в сосудах

Экстероцептивные проводящие пути. Проводящий путь болевой и температурной чувствительности - латеральный спинно-таламический путь (tractus spinothalamicus lateralis) состоит из трех нейронов. Чувствительным проводящим путям принято давать названия с учетом топографии - места начала и конца второго нейрона. Например, у спинно-таламического пути второй нейрон простирается от спинного мозга, где в заднем роге лежит тело клетки, до таламуса, где аксон этого нейрона образует синапс с клеткой третьего нейрона. Рецепторы первого (чувствительного) нейрона, воспринимающие чувство боли, температуру, располагаются в коже, слизистых оболочках, а нейрит третьего нейрона заканчивается в коре постцентральной извилины, где находится корковый конец анализатора общей чувствительности. Тело первой чувствительной клетки лежит в спинномозговом узле, а ее центральный отросток в составе заднего корешка направляется в задний рог спинного мозга и заканчивается синапсами на клетках второго нейрона. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга через его переднюю серую спайку и входит в боковой канатик, где включается в состав латерального спинно-таламического пути. Из спинного мозга пучок поднимается в продолговатый мозг и располагается позади ядра оливы, а в покрышке моста и среднего мозга лежит у наружного края медиальной петли. Заканчивается второй нейрон латерального спинно-таламического пути синапсами на клетках дорсального латерального ядра таламуса. Здесь расположены тела третьего нейрона, отростки клеток которого проходят через заднюю ножку внутренней капсулы и в составе веерообразно расходящихся пучков волокон, образующих лучистый венец (corona radiata). Эти волокна достигают коры полушария большого мозга, его постцентральной извилины. Здесь они заканчиваются синапсами с клетками четвертого слоя (внутренняя зернистая пластинка). Волокна третьего нейрона чувствительного (восходящего) проводящего пути, соединяющего таламус с корой, образуют таламокорковые пучки (fasciculi thalamocorticalis) - таламотеменные волокна (fibrae thalamoparietales). Латеральный спинно-таламический путь является полностью перекрещенным проводящим путем (все волокна второго нейрона переходят на противоположную сторону), поэтому при повреждении одной половины спинного мозга полностью исчезают болевая и температурная чувствительность на противоположной стороне от повреждения.

Проводящий путь осязания и давления, передний спинно-таламический путь (tractus spinothalamicus ventralis, s. anterior) несет импульсы от кожи, где лежат рецепторы, воспринимающие чувство давления и осязания. Импульсы идут к коре большого мозга, в постцентральную извилину - место расположения коркового конца анализатора общей чувствительности. Тела клеток первого нейрона лежат в спинномозговом узле, а их центральные отростки в составе заднего корешка спинномозговых нервов направляются в задний рог спинного мозга, где заканчиваются синапсами на клетках второго нейрона. Аксоны второго нейрона переходят на противоположную сторону спинного мозга (через переднюю серую спайку), входят в передний канатик и в его составе направляются вверх, к головному мозгу. На своем пути в продолговатом мозге аксоны этого пути присоединяются с латеральной стороны к волокнам медиальной петли и заканчиваются в таламусе, в его дорсальном латеральном ядре, синапсами на клетках третьего нейрона. Волокна третьего нейрона проходят через внутреннюю капсулу (заднюю ножку) и в составе лучистого венца достигают IV слоя коры постцентральной извилины.

Необходимо отметить, что не все волокна, несущие импульсы осязания и давления, переходят на противоположную сторону в спинном мозге. Часть волокон проводящего пути осязания и давления идет в составе заднего канатика спинного мозга (своей стороны) вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления. В связи с этим при поражении одной половины спинного мозга кожное чувство осязания и давления на противоположной стороне не исчезает полностью, как болевая чувствительность, а только снижается. Этот переход на противоположную сторону частично осуществляется в продолговатом мозге.

Проприоцептивные проводящие пути. Проводящий путь проприоцептивной чувствительности коркового направления (tractus bulbothalamicus - BNA) называется так, поскольку проводит импульсы мышечно-суставного чувства к коре большого мозга, в постцентральную извилину. Чувствительные окончания (рецепторы) первого нейрона располагаются в мышцах, сухожилиях, суставных капсулах, связках. Сигналы о тонусе мышц, натяжении сухожилий, о состоянии опорно-двигательного аппарата в целом (импульсы проприоцептивной чувствительности) позволяют человеку оценить положение частей тела (головы, туловища, конечностей) в пространстве, а также во время движения и проводить целенаправленные осознанные движения и их коррекцию. Тела первых нейронов лежат в спинномозговом узле. Центральные отростки этих клеток в составе заднего корешка направляются в задний канатик, минуя задний рог, а затем уходят вверх в продолговатый мозг к тонкому и клиновидному ядрам. Аксоны, несущие проприоцептивные импульсы, входят в задний канатик начиная с нижних сегментов спинного мозга. Каждый следующий пучок аксонов прилежит с латеральной стороны к уже имеющимся пучкам. Таким образом, наружные отделы заднего канатика (клиновидный пучок, пучок Бурдаха) заняты аксонами клеток, осуществляющих проприоцептивную иннервацию в верхнегрудных, шейных отделах тела и верхних конечностей. Аксоны, занимающие внутреннюю часть заднего канатика (тонкий пучок, пучок Голля), проводят проприоцептивные импульсы от нижних конечностей и нижней половины туловища. Центральные отростки первого нейрона заканчиваются синапсами на своей стороне, на клетках второго нейрона, тела которых лежат в тонком и клиновидных ядрах продолговатого мозга. Аксоны клеток второго нейрона выходят из этих ядер, дугообразно изгибаются вперед и медиально на уровне нижнего угла ромбовидной ямки и в межоливном слое переходят на противоположную сторону, образуя перекрест медиальных петель (decussatio lemniscorum medialis). Пучок волокон, обращенных в медиальном направлении и переходящих на другую сторону, получил название внутренних дугообразных волокон (fibrae arcuatae internae), которые являются начальным отделом медиальной петли (lemniscus medialis). Волокна меди альной петли в мосту располагаются в задней его части (в покрышке), почти на границе с передней частью (между пучками волокон трапециевидного тела). В покрышке среднего мозга пучок волокон медиальной петли занимает место дорсолатеральнее красного ядра, а заканчивается в дорсальном латеральном ядре таламуса синапсами на клетках третьего нейрона. Аксоны клеток третьего нейрона через заднюю ножку внутренней капсулы и в составе лучистого венца достигают постцентральной извилины.

Часть волокон второго нейрона по выходе из тонкого и клиновидного ядер изгибается кнаружи и разделяется на два пучка. Один пучок - задние наружные дугообразные волокна (fibrae arcuatae externae dorsales, s. posteriores), направляются в нижнюю мозжечковую ножку своей стороны и заканчиваются в коре червя мозжечка. Волокна второго пучка - передние наружные дугообразные волокна (fibrae arcuatae externae ventrales, s. anteriores) уходят вперед, переходят на противоположную сторону, огибают с латеральной стороны оливное ядро и также через нижнюю мозжечковую ножку направляются к коре червя мозжечка. Передние и задние наружные дугообразные волокна несут проприоцептивные импульсы к мозжечку.

Проприоцептивный путь коркового направления также перекрещенный. Аксоны второго нейрона переходят на противоположную сторону не в спинном мозге, а в продолговатом. При повреждении спинного мозга на стороне возникновения проприоцептивных импульсов (при травме мозгового ствола - на противоположной стороне) теряется представление о состоянии опорно-двигательного аппарата, положении частей тела в пространстве, нарушается координация движений.

Наряду с проприоцептивным проводящим путем, несущим импульсы к коре большого мозга, следует назвать проприоцептивные передний и задний спинно-мозжечковые пути. По этим проводящим путям мозжечок получает информацию от расположенных ниже чувствительных центров (спинного мозга) о состоянии опорно-двигательного аппарата, участвует в рефлекторной координации движений, обеспечивающих равновесие тела без участия высших отделов головного мозга (коры полушарий большого мозга).

Задний спинно-мозжечковый путь (tractus spinocerebellaris dorsalis, s. posterior; пучок Флексига) передает проприоцептивные импульсы от мышц, сухожилий, суставов в мозжечок. Тела клеток первого (чувствительного) нейрона находятся в спинномозговом узле, а центральные отростки их в составе заднего корешка направляются в задний рог спинного мозга и заканчиваются синапсами на клетках грудного ядра (ядра Кларка), лежащего в медиальной части основания заднего рога. Клетки грудного ядра являются вторым нейроном заднего спинно-мозжечкового пути. Аксоны этих клеток выходят в боковой канатик своей стороны, в его заднюю часть, поднимаются вверх и через нижнюю мозжечковую ножку входят в мозжечок, к клеткам коры червя. Здесь спинно-мозжечковый путь заканчивается.

Можно проследить системы волокон, по которым импульс из коры червя достигает красного ядра, полушария мозжечка и даже вышележащих отделов мозга - коры полушарий большого мозга. Из коры червя через пробковидное и шаровидное ядра импульс через верхнюю мозжечковую ножку направляется к красному ядру противоположной стороны (мозжечково-покрышечный путь). Кора червя связана ассоциативными волокнами с корой полушария мозжечка, откуда импульсы поступают в зубчатое ядро мозжечка.

С развитием высших центров чувствительности и произвольных движений в коре полушарий большого мозга возникли также связи мозжечка с корой, осуществляющиеся через таламус. Таким образом, из зубчатого ядра аксоны его клеток через верхнюю мозжечковую ножку выходят в покрышку моста, переходят на противоположную сторону и направляются к та-ламусу. Переключившись в таламусе на следующий нейрон, импульс следует в кору большого мозга, в постцентральную извилину.

Передний спинно-мозжечковый путь (tractus spinocerebellaris ventralis, s. anterior; пучок Говерса) имеет более сложное строение, чем задний, поскольку проходит в боковом канатике противоположной стороны, возвращаясь в мозжечок на свою сторону. Тело клетки первого нейрона располагается в спинномозговом узле. Его периферический отросток имеет окончания (рецепторы) в мышцах, сухожилиях, суставных капсулах. Центральный отросток клетки первого нейрона в составе заднего корешка входит в спинной мозг и заканчивается синапсами на клетках, примыкающих с латеральной стороны к грудному ядру. Аксоны клеток этого второго нейрона проходят через переднюю серую спайку в боковой канатик противоположной стороны, в его переднюю часть, и поднимаются вверх до уровня перешейка ромбовидного мозга. В этом месте волокна переднего спинно-мозжечкового пути возвращаются на свою сторону и через верхнюю мозжечковую ножку вступают в кору червя своей стороны, в его передневерхние отделы. Таким образом, передний спинно-мозжечковый путь, проделав сложный, дважды перекрещенный путь, возвращается на ту же сторону, на которой возникли проприоцептивные импульсы. Проприоцептивные импульсы, поступившие в кору червя по переднему спинно-мозжечковому проприоцептивному пути, также передаются в красное ядро и через зубчатое ядро в кору большого мозга (в постцентральную извилину).

Схемы строения проводящих путей зрительного, слухового анализаторов, вкуса и обоняния рассматриваются в соответствующих разделах анатомии (см. «Органы чувств»).

Нисходящие проекционные пути (эффекторные, эфферентные) проводят импульсы от коры, подкорковых центров к нижележащим отделам, к ядрам мозгового ствола и двигательным ядрам передних рогов спинного мозга. Эти пути можно подразделить на две группы:

  1. главный двигательный, или пирамидный путь (корково-ядерный и корково-спинномозговые пути), несет импульсы произвольных движений из коры головного мозга к скелетным мышцам головы, шеи, туловища, конечностей через соответствующие двигательные ядра головного и спинного мозга;
  2. экстрапирамидные двигательные пути (tractus rubrospinalis, tractus vestibulospinalis и др.) передают импульсы от подкорковых центров к двигательным ядрам черепных и спинномозговых нервов, а затем к мышцам.

К пирамидному пути (tractus pyramidalis) относится система волокон, по которым двигательные импульсы из коры большого мозга, из предцентральной извилины, от гигантопирамидальных нейронов (клетки Беца) направляются к двигательным ядрам черепных нервов и передним рогам спинного мозга, а от них - к скелетным мышцам. Учитывая направление хода волокон, а также расположение пучков в стволе головного мозга и канатиках спинного мозга, пирамидный путь подразделяют на три части:

  1. корково-ядерный - к ядрам черепных нервов;
  2. латеральный корково-спинномозговой - к ядрам передних рогов спинного мозга;
  3. передний корково-спинномозговой - также к передним рогам спинного мозга.

Корково-ядерный путь (tractus corticonuclearis) представляет собой пучок отростков гигантопирамидальных нейронов, которые из коры нижней трети предцентральной извилины спускаются к внутренней капсуле и проходят через ее колено. Далее волокна корково-ядерного пути идут в основании ножки мозга, образуя медиальную часть пирамидных путей. Корково-ядерный, а также корково-спинномозговые пути занимают средние 3/5 основания ножки мозга. Начиная со среднего мозга и далее, в мосту и продолговатом мозге волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов: III и IV - в среднем мозге; V, VI, VII - в мосту; IX, X, XI, XII - в продолговатом мозге. В этих ядрах корково-ядерный путь заканчивается. Составляющие его волокна образуют синапсы с двигательными клетками этих ядер. Отростки упомянутых двигательных клеток выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи и их иннервируют.

Латеральный и передний корково-спинномозговые пути (tractus corticospinales lateralis et ventralis, s.anterior) также начинаются от гигантопирамидальных нейронов предцентральной извилины, ее верхних 2/3. Аксоны этих клеток направляются к внутренней капсуле, проходят через переднюю часть ее задней ножки (сразу позади волокон корково-ядерного пути), спускаются в основание ножки мозга, где занимают место латеральнее корково-ядерного пути. Далее корково-спинномозговые волокна спускаются в переднюю часть (основание) моста, пронизывают идущие в поперечном направлении пучки волокон моста и выходят в продолговатый мозг, где на передней (нижней) его поверхности образуют выступающие вперед валики - пирамиды. В нижней части продолговатого мозга часть волокон переходит на противоположную сторону и продолжается в боковой канатик спинного мозга, постепенно заканчиваясь в передних рогах спинного мозга синапсами на двигательных клетках его ядер. Эта часть пирамидных путей, участвующая в образовании перекреста пирамид (моторный перекрест), получила название латерального корково-спинномозгового пути. Те волокна корково-спинномозгового пути, которые не участвуют в образовании перекреста пирамид и не переходят на противоположную сторону, продолжают свой путь вниз в составе переднего канатика спинного мозга. Эти волокна составляют передний корково-спинномозговой путь. Затем эти волокна также переходят на противоположную сторону, но через белую спайку спинного мозга и заканчиваются на двигательных клетках переднего рога противоположной стороны спинного мозга. Располагающийся в переднем канатике передний корково-спинномозговой путь более молодой в эволюционном плане, чем латеральный. Его волокна спускаются преимущественно до уровня шейных и грудных сегментов спинного мозга.

Следует отметить, что все пирамидные пути являются перекрещенными, т.е. их волокна на пути к следующему нейрону рано или поздно переходят на противоположную сторону. Поэтому повреждение волокон пирамидных путей при одностороннем поражении спинного (или головного) мозга ведет к параличу мышц на противоположной стороне, получающих иннервацию из сегментов, лежащих ниже места повреждения.

Вторыми нейронами нисходящего произвольного двигательного пути (корково-спинномозгового) являются клетки передних рогов спинного мозга, длинные отростки которых выходят из спинного мозга в составе передних корешков и направляются в составе спинномозговых нервов для иннервации скелетных мышц.

Экстрапирамидные проводящие пути, объединенные в одну группу, в отличие от более новых пирамидных путей являются эволюционно более старыми, имеющими обширные связи в мозговом стволе и с корой большого мозга, взявшей на себя функции контроля и управления экстрапирамидной системой. Кора большого мозга, получающая импульсы как по прямым (коркового направления) восходящим чувствительным путям, так и из подкорковых центров, управляет двигательными функциями организма через экстрапирамидные и пирамидные пути. Кора большого мозга оказывает влияние на двигательные функции спинного мозга через систему мозжечок - красные ядра, через ретикулярную формацию, имеющую связи с таламусом и полосатым телом, через вестибулярные ядра. Таким образом, в число центров экстрапирамидной системы входят красные ядра, одной из функций которых является поддержание мышечного тонуса, необходимого для удерживания тела в состоянии равновесия без усилия воли. Красные ядра, которые относятся также к ретикулярной формации, получают импульсы из коры большого мозга, мозжечка (от мозжечковых проприоцептивных путей) и сами имеют связи с двигательными ядрами передних рогов спинного мозга.

Красноядерно-спинномозговой путь (trdctus rubrospinalis) входит в состав рефлекторной дуги, приносящим звеном которой являются спинно-мозжечковые проприоцептивные проводящие пути. Этот путь берет начало от красного ядра (пучок Монакова), переходит на противоположную сторону (перекрест Фореля) и спускается в боковом канатике спинного мозга, заканчиваясь на двигательных клетках спинного мозга. Волокна этого пути проходят в задней части (покрышка) моста и боковых отделах продолговатого мозга.

Важным звеном в координации двигательных функций тела человека является преддверно-спинномозговой путь (tractus vestibulospinalis). Он связывает ядра вестибулярного аппарата с передними рогами спинного мозга и обеспечивает установочные реакции тела при нарушении равновесия. В образовании преддверно-спинномозгового пути принимают участие аксоны клеток латерального вестибулярного ядра (ядро Дейтерса), а также нижнего вестибулярного ядра (нисходящего корешка) преддверно-улиткового нерва. Эти волокна спускаются в латеральной части переднего канатика спинного мозга (на границе с боковым) и заканчиваются на двигательных клетках передних рогов спинного мозга. Ядра, образующие преддверно-спинномозговой путь, находятся в непосредственной связи с мозжечком, а также с задним продольным пучком (fasciculus longitudinalis dorsalis, s. posterior), который в свою очередь связан с ядрами глазодвигательных нервов. Наличие связей с ядрами глазодвигательных нервов обеспечивает сохранение положения глазных яблок (направление зрительной оси) при поворотах головы и шеи. В образовании заднего продольного пучка и тех волокон, которые достигают передних рогов спинного мозга (ретикулярно-спинномозговой путь, tractus reticulospinalis), принимают участие клеточные скопления ретикулярной формации стволовой части мозга, главным образом промежуточное ядро (nucleus intersticialis, ядро Кахаля), ядро эпиталамической (задней) спайки, ядро Даркшевича, к которым приходят волокна из базальных ядер полушарий большого мозга.

Управление функциями мозжечка, участвующего в координации движений головы, туловища и конечностей и связанного в свою очередь с красными ядрами и вестибулярным аппаратом, осуществляется из коры большого мозга через мост по корково-мостомозжечковому пути (tractus corticopontocerebellaris). Этот проводящий путь состоит из двух нейронов. Тела клеток первого нейрона лежат в коре лобной, височной, теменной и затылочной долей. Их отростки - корковом остовые волокна (fibrae corticopontinae) направляются к внутренней капсуле и проходят через нее. Волокна из лобной доли, которые можно назвать лобно-мостовыми волокнами (fibrae frontopontinae), проходят через переднюю ножку внутренней капсулы. Нервные волокна из височной, теменной и затылочной долей идут через заднюю ножку внутренней капсулы. Далее волокна корково-мостового пути идут через основание ножки мозга. От лобной доли волокна проходят через самую медиальную часть основания ножки мозга, кнутри от корково-ядерных волокон. От теменной и других долей полушарий большого мозга идут через самую латеральную часть, кнаружи от корково-спинномозговых путей. В передней части (в основании) моста волокна корково-мостового пути заканчиваются синапсами на клетках ядра моста этой же стороны мозга. Клетки ядер моста с их отростками составляют второй нейрон корково-мозжечкового пути. Аксоны клеток ядер моста складываются в пучки - поперечные волокна моста (fibrae pontis transversae), которые переходят на противоположную сторону, пересекают при этом в поперечном направлении нисходящие пучки волокон пирамидных путей и через среднюю мозжечковую ножку направляются в полушарие мозжечка противоположной стороны.

Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, участвуют в образовании сложных рефлекторных дуг в теле человека. Одни проводящие пути (системы волокон) начинаются или заканчиваются в эволюционно более старых, лежащих в мозговом стволе ядрах, обеспечивающих функции, обладающие определенным автоматизмом. Эти функции (например, тонус мышц, автоматические рефлекторные движения) осуществляются без участия сознания, хотя и под контролем коры большого мозга. Другие проводящие пути передают импульсы в кору большого мозга, в высшие отделы ЦНС, или из коры к подкорковым центрам (к базальным ядрам, ядрам мозгового ствола и спинного мозга). Проводящие пути функционально объединяют организм в одно целое, обеспечивают согласованность его действий.