Преддверно-улитковый орган — ухо — орган слуха — organum vestibulocochleare. Проводящий путь слухового анализатора, его нейронный состав элементы строения внутреннего уха

Проводящий путь слухового анализатора обеспечивает проведение нерв­ных импульсов от специальных слуховых волосковых клеток спирального (кортиева) органа в корковые центры полушарий большою мозга (рис 2)

Первые нейроны этою пути представлены псевдоуниполярными нейро­нами, тела которых находятся в спиральном узле улитки внутреннего уха (спиральный канал) Их периферические отростки (дендриты) заканчиваются на наружных волосковых сенсорных клетках спирального органа

Спиральный орган, описанный впервые в 1851г. итальянским анатомом и гистологом A Corti * представлен несколькими рядами эпителиальных кле­ток (поддерживающие клетки наружные и внутренние клетки столбов) среди которых помещены внутренние и наружные волосковые сенсорные клетки, со­ставляющие рецепторы слухового анализатора.

* Корт Альфонсо (Сorti Alfonso 1822-1876) итальянский анатом. Родился в Камба-рене (Сардиния) Работал прозектором у И.Гиртля, позднее - гистологом в Вюрцбурге. Ут-рехте и Турине. В 1951г. впервые описал строение спирального органа улитки. Известен также работами по микроскопической анатомии сетчатки глаза. сравнительной анатомии слухового аппарата.

Тела сенсорных клеток фиксированы на базилярной пластинке Базиляр-ная пластинка состоит из 24 000 гонких поперечно распоженных коллагено-вых волокон (струн) длина которых от основания улитки до ее верхушки плав­но нарастает от 100 мкм до 500 мкм при диаметре 1 -2 мкм

По последним данным, коллагеновые волокна образуют эластическую сеть, расположенную в гомогенном основном веществе, которая на звуки раз­ной частоты резонирует в целом строго градуированными колебаниями Коле-бательные движения с перилимфы барабанной лестницы передаются на бази-лярную пластинку, вызывая максимальное колебание тех ее отделов, которые "настроены" в резонанс на данную частоту волны Для низких звуков такие участки находятся вершины улитки, а для высоких у ее основания

Ухо человека воспринимает звуковые волны с частотой колебаний от 161 ц до 20 000 Гц. Для человеческой речи наиболее оптимальные границы от 1000 Гц до 4000 Гц.

При колебаниях определенных участков базилярной пластинки происходит натяжение и сжатие волосков сенсорных клеток, соответствующих данном) участку базилярной пластинки.

Под действием механической энергии в волосковых сенсорных клетках, изменяющих свое положение всего лишь на величину диаметра атома, возни­кают определенные цитохимические процессы, в результате чего энергия внешнего раздражения трансформируется в нервный импульс. Проведение нервных импульсов от специальных слуховых волосковых клеток спирально­го (кортиева) органа в корковые центры полушарий большого мозга осущест­вляется с помощью слухового пути.


Центральные отростки (аксоны) псевдоуниполярных клеток спирально­го узла улитки покидают внутреннее ухо через внутренний слуховой проход, собираясь в пучок, представляющий собой улитковый корешок преддверно-улиткового нерва. Улитковый нерв вступает в вещество мозгового ствола в об­ласти мостомозжечкового угла, его волокна заканчиваются на клетках перед­него (вентрального) и заднего (дорсального) улитковых ядер, где находятся те­ла II нейронов.

Аксоны клеток заднего улиткового ядра (II нейроны) выходят на поверх­ность ромбовидной ямки, затем идут к срединной борозде в виде мозговых по­лосок, пересекая поперек ромбовидную ямку на границе моста и продолговато­го мозга. В области срединной борозды основная масса волокон мозговых по­лосок погружается в вещество мозга и переходит на противоположную сторо­ну, где следует между передней (вентральной) и задней (дорсальной частями моста в составе трапециевидного тела, а затем в составе латеральной петли на­правляются к подкорковым центрам слуха. Меньшая часть волокон мозговой полоски присоединяется к латеральной петле одноименной стороны.

Аксоны клеток переднего улиткового ядра (II нейроны) заканчиваются на клетках переднего ядра трапециевидного тела своей стороны (меньшая часть) или в глубине моста к аналогичному ядру противоположной стороны, образуя трапециевидное тело.

Совокупность аксонов III нейронов, тела которых лежат в области задне­го ядра трапециевидного тела, составляют латеральную петлю. Образовавший­ся у латерального края трапециевидного тела плотный пучок латеральной пет­ли резко меняет направление на восходящее, следуя далее вблизи латеральной поверхности ножки мозга в ее покрышке, отклоняясь при этом все более кна­ружи, так что в области перешейка ромбовидного мозга волокна латеральной петли лежат поверхностно, образуя треугольник петли.

Кроме волокон, в состав латеральной петли входят нервные клетки, которые составляют ядро латеральной петли. В этом ядре часть волокон, исходя­щих из улитковых ядер и ядер трапециевидного тела, прерывается.

Волокна латеральной петли заканчиваются в подкорковых слуховых цен­трах (медиальные коленчатые тела, нижние холмики пластинки крыши средне­го мозга), где располагаются IV нейроны.

В нижних холмиках пластинки крыши среднею мозга формируется вторая часть покрышечно-спинномозгового пути, волокна которого, проходя в пе­редних корешках спинного мозга, заканчиваются посегментно на двигательных анимальных клетках его передних рогов. Через описанную часть покрышечно-спинномозгового пути осуществляются непроизвольные защитные двигательные реакции на внезапные слуховые раздражения.

Аксоны клеток медиальных коленчатых тел (IV нейроны) проходят в ви­де компактного пучка через заднюю часть задней ножки внутренней капсулы, а зачем, веерообразно рассыпаясь, формируют слуховую лучистость и достигают коркового ядра слухового анализатора, в частности, верхней височной извили­ны (извилины Гешля *).

* Гешль Ричард (Heschl Richard. 1824 - 1881) - австрийский анатом и птолог. родился в Велледорфе (Штирия) Медицинское образование получил в Вене.Профессор анатомии в Оломоуце, патологии - в Кракове, клинической медицины - в Граце. Изучал общие проблемы патологии. В 1855 г. издал руководство по общей и специальной патологической анатомии человека

Корковое ядро слухового анализатора воспринимает слуховые раздраже­ния преимущественно с противоположной стороны. Ввиду неполного пере­креста слуховых путей одностороннее поражение латеральной петли. подкор­кового слухового центра или коркового ядра слухового анализа юра может не сопровождаться резким расстройством слуха, отмечается лишь снижение слуха на оба уха.

При неврите (воспалении) преддверно-улиткового нерва довольно часто наблюдается снижение слуха.

Снижение слуха может наступать как результат избирательного необратимого повреждения волосковых сенсорных клеток при введении в организм больших доз антибиотиков, обладающих ототоксическим действием.


Проводящий путь вестибулярного (статокинетического) анализато­ра

Проводящий путь вестибулярного (статокинетического) анализатора обеспечивает проведение нервных импульсов от волосковых сенсорных клеток ампулярных гребешков (ампулы полукружных протоков) и пятен (эллиптического и сферического мешочков) в корковые центры полушарий большого мозга (рис.3).

Тела первых нейронов статокинетического анализатора лежат в преддверном узле, находящемся на дне внутреннего слухового прохода. Перифери­ческие отростки псевдоуниполярных клеток преддверного узла заканчиваются на волосковых сенсорных клетках ампулярных гребешков и пятен.

Центральные отростки псевдоуниполярных клеток в виде преддверной части преддверно-улиткового нерва вместе с улитковой частью через внутреннее слуховое отверстие вступают в полость черепа, а затем в мозг к вестибулярным ядрам лежащим в области вестибулярного поля, area vesribularis ромбовидной ямки

Восходящая часть волокон заканчивается на клетках верхнего вестибулярного ядра (Бехтерева*) Волокна составляющие нисходящую часть, закан­чиваются в медиальном (Швальбе**), латеральном (Дейтерса***) и нижнем Роллера****) вестибулярных ядpax

* Бехтерев В М (1857- 1927) русский невропатолог и психиатр. Окончил Петербургскую медико-хирургическую академию в 1878 г С 1894 г возглавлял кафедру невропатологии и психиатрии Военно-медицинской академии В 1918 г основал ин-т по изучению мозга и психической деятельности

** Швальбе Густав (Schwalbe Gustav Albert 1844-1916) - немецкий анатом и антрополог. Родился в Кедлингбурге. Медицину изучал в Берлине, Цюрихе и Бонне. Занимался гистологией и физиологией мышц, морфологией лимфатической и нервной систем, органов чувств. Автор "Учебника по неврологии" (1881)

*** Дейтерс Отто (Deiters Otto Friedrich Karl 1844-1863)- немецкий анатом и гистолог. Родился в Бонне. Медицинское образование получил в Берлине. Работал врачом в Бонне, а затем был избран профессором анатомии и гистологии в Боннском ун-те. Занимался изучение тонкого строения головного мозга. органа слуха и равновесия, сравнительной анатомией центральной нервной системы. впервые описал сетчатое вещество мозга и предложил термин "сетевая ретикулярная формация"

**** Роллер Х.Ф. (Roller Ch.F.W.)- немецкий психиатр

Аксоны клеток вестибулярных ядер (II нейроны) образуют ряд пучков, которые идут к мозжечку, к ядрам нервов глазных мышц ядрам вегетативных центров, коре головного мозга, к спинному мозгу

Часть аксонов клеток латерального и верхнего вестибулярного ядра в ви­де преддверно-спинномозгового пути направляется в спинной моя располага­ясь по периферии на границе переднего и боковою канатиков и заканчивается посегментно на двигательных анимальных клетках передних рогов, осуще­ствляя проведение вестибулярных импульсов на мышцы шеи туловища и ко­нечностей, обеспечивая поддержание равновесия тела

Часть аксонов нейронов латерального вестибулярного ядpa направляется в медиальный продольный пучок своей и противоположной стороны, обеспе­чивая связь органа равновесия через латеральное ядро с ядрами черепных нер­вов (III, IV, VI нар), иннервирующих мышцы глазного яблока что позволяет сохранить направление взгляда, несмотря на изменения положения головы. Поддержание равновесия тела в значительной степени зависит от согласован­ных движений глазных яблок и головы

Аксоны клеток вестибулярных ядер образуют связи с нейронами ретикулярной формации мозгового ствола и с ядрами покрышки среднего мозга

Появление вегетативных реакций (урежение пульса, падение артериального давления, тошнота, рвота, побледнение лица, усиление перистальтики желудочно-кишечного тракта и т.д.) в ответ на чрезмерное раздражение вестибулярного аппарата можно объяснить наличием связей вестибулярных ядер через ретикулярную формацию с ядрами блуждающего и языкоглоточного нервов

Сознательное определение положения головы достигается наличием свя­зей вестибулярных ядер с корой полушарий большою мозга При этом аксоны клеток вестибулярных ядер переходят на противоположную сторону и направ­ляются в составе медиальной петли к латеральному ядру таламуса, где пере­ключаются на III нейроны

Аксоны III нейронов проходят через заднюю часть задней ножки внутренней капсулы и достигают коркового ядра стато-кинетического анализатора, которое рассеяно в коре верхней височной и постцентральной извилин, а также в верхней теменной дольке полушарий большого мозга

Поражение вестибулярных ядер. нерва и лабиринта сопровождается по­явлением основных симптомов головокружения, нистагма (ритмичное подер­гивание глазных яблок), расстройства равновесия и координации движений

Проводящий путь слухового анализатора обеспечивает проведение нерв­ных импульсов от специальных слуховых волосковых клеток спирального (кортиева) органа в корковые центры полушарий большою мозга (рис 2)

Первые нейроны этою пути представлены псевдоуниполярными нейро­нами, тела которых находятся в спиральном узле улитки внутреннего уха (спиральный канал) Их периферические отростки (дендриты) заканчиваются на наружных волосковых сенсорных клетках спирального органа

Спиральный орган, описанный впервые в 1851г. итальянским анатомом и гистологом A Corti * представлен несколькими рядами эпителиальных кле­ток (поддерживающие клетки наружные и внутренние клетки столбов) среди которых помещены внутренние и наружные волосковые сенсорные клетки, со­ставляющие рецепторы слухового анализатора.

* Корт Альфонсо (Сorti Alfonso 1822-1876) итальянский анатом. Родился в Камба-рене (Сардиния) Работал прозектором у И.Гиртля, позднее - гистологом в Вюрцбурге. Ут-рехте и Турине. В 1951г. впервые описал строение спирального органа улитки. Известен также работами по микроскопической анатомии сетчатки глаза. сравнительной анатомии слухового аппарата.

Тела сенсорных клеток фиксированы на базилярной пластинке Базиляр-ная пластинка состоит из 24 000 гонких поперечно распоженных коллагено-вых волокон (струн) длина которых от основания улитки до ее верхушки плав­но нарастает от 100 мкм до 500 мкм при диаметре 1 -2 мкм

По последним данным, коллагеновые волокна образуют эластическую сеть, расположенную в гомогенном основном веществе, которая на звуки раз­ной частоты резонирует в целом строго градуированными колебаниями Коле-бательные движения с перилимфы барабанной лестницы передаются на бази-лярную пластинку, вызывая максимальное колебание тех ее отделов, которые "настроены" в резонанс на данную частоту волны Для низких звуков такие участки находятся вершины улитки, а для высоких у ее основания

Ухо человека воспринимает звуковые волны с частотой колебаний от 161 ц до 20 000 Гц. Для человеческой речи наиболее оптимальные границы от 1000 Гц до 4000 Гц.

При колебаниях определенных участков базилярной пластинки происходит натяжение и сжатие волосков сенсорных клеток, соответствующих данном) участку базилярной пластинки.

Под действием механической энергии в волосковых сенсорных клетках, изменяющих свое положение всего лишь на величину диаметра атома, возни­кают определенные цитохимические процессы, в результате чего энергия внешнего раздражения трансформируется в нервный импульс. Проведение нервных импульсов от специальных слуховых волосковых клеток спирально­го (кортиева) органа в корковые центры полушарий большого мозга осущест­вляется с помощью слухового пути.

Центральные отростки (аксоны) псевдоуниполярных клеток спирально­го узла улитки покидают внутреннее ухо через внутренний слуховой проход, собираясь в пучок, представляющий собой улитковый корешок преддверно-улиткового нерва. Улитковый нерв вступает в вещество мозгового ствола в об­ласти мостомозжечкового угла, его волокна заканчиваются на клетках перед­него (вентрального) и заднего (дорсального) улитковых ядер, где находятся те­ла II нейронов.

Аксоны клеток заднего улиткового ядра (II нейроны) выходят на поверх­ность ромбовидной ямки, затем идут к срединной борозде в виде мозговых по­лосок, пересекая поперек ромбовидную ямку на границе моста и продолговато­го мозга. В области срединной борозды основная масса волокон мозговых по­лосок погружается в вещество мозга и переходит на противоположную сторо­ну, где следует между передней (вентральной) и задней (дорсальной частями моста в составе трапециевидного тела, а затем в составе латеральной петли на­правляются к подкорковым центрам слуха. Меньшая часть волокон мозговой полоски присоединяется к латеральной петле одноименной стороны.

Аксоны клеток переднего улиткового ядра (II нейроны) заканчиваются на клетках переднего ядра трапециевидного тела своей стороны (меньшая часть) или в глубине моста к аналогичному ядру противоположной стороны, образуя трапециевидное тело.

Совокупность аксонов III нейронов, тела которых лежат в области задне­го ядра трапециевидного тела, составляют латеральную петлю. Образовавший­ся у латерального края трапециевидного тела плотный пучок латеральной пет­ли резко меняет направление на восходящее, следуя далее вблизи латеральной поверхности ножки мозга в ее покрышке, отклоняясь при этом все более кна­ружи, так что в области перешейка ромбовидного мозга волокна латеральной петли лежат поверхностно, образуя треугольник петли.

Кроме волокон, в состав латеральной петли входят нервные клетки, которые составляют ядро латеральной петли. В этом ядре часть волокон, исходя­щих из улитковых ядер и ядер трапециевидного тела, прерывается.

Волокна латеральной петли заканчиваются в подкорковых слуховых цен­трах (медиальные коленчатые тела, нижние холмики пластинки крыши средне­го мозга), где располагаются IV нейроны.

В нижних холмиках пластинки крыши среднею мозга формируется вторая часть покрышечно-спинномозгового пути, волокна которого, проходя в пе­редних корешках спинного мозга, заканчиваются посегментно на двигательных анимальных клетках его передних рогов. Через описанную часть покрышечно-спинномозгового пути осуществляются непроизвольные защитные двигательные реакции на внезапные слуховые раздражения.

Аксоны клеток медиальных коленчатых тел (IV нейроны) проходят в ви­де компактного пучка через заднюю часть задней ножки внутренней капсулы, а зачем, веерообразно рассыпаясь, формируют слуховую лучистость и достигают коркового ядра слухового анализатора, в частности, верхней височной извили­ны (извилины Гешля *).

* Гешль Ричард (Heschl Richard. 1824 - 1881) - австрийский анатом и птолог. родился в Велледорфе (Штирия) Медицинское образование получил в Вене.Профессор анатомии в Оломоуце, патологии - в Кракове, клинической медицины - в Граце. Изучал общие проблемы патологии. В 1855 г. издал руководство по общей и специальной патологической анатомии человека

Корковое ядро слухового анализатора воспринимает слуховые раздраже­ния преимущественно с противоположной стороны. Ввиду неполного пере­креста слуховых путей одностороннее поражение латеральной петли. подкор­кового слухового центра или коркового ядра слухового анализа юра может не сопровождаться резким расстройством слуха, отмечается лишь снижение слуха на оба уха.

При неврите (воспалении) преддверно-улиткового нерва довольно часто наблюдается снижение слуха.

Снижение слуха может наступать как результат избирательного необратимого повреждения волосковых сенсорных клеток при введении в организм больших доз антибиотиков, обладающих ототоксическим действием.

Проводящий путь слухового анализатора осуществляет связь кортиева органа с вышележащими отделами ЦНС. Первый нейрон находится в спиральном узле, расположенном в основании полого улиткового узла проходят по каналам костной спиральной пластинки к спиральному органу и оканчиваются у наружных волосковых клеток. Аксоны спирального узла составляют слуховой нерв, вступающий в области мостомозжечкового угла в ствол мозга, где и заканчиваются синапсами с клетками дорсального и вентрального ядер.

Аксоны вторых нейронов от клеток дорсального ядра образуют мозговые полоски находящиеся в ромбовидной ямке на границе моста и продолговатого мозга. Большая часть мозговой полоски переходит на противоположную сторону и около средней линии переходит погружается в вещество мозга, подключаясь к латеральной петле своей стороны. Аксоны вторых нейронов от клеток вентрального ядра участвуют в образовании трапециевидного тела. Большая часть аксонов переходит на противоположную сторону, переключаясь в верхней оливе и ядрах трапециевидного тела. Меньшая часть волокон оканчивается на своей стороне.

Аксоны ядер верхней оливы и трапециевидного тела (III нейрон) участвуют в образовании латеральной петли, имеющей волокна II и III нейронов. Часть волокон II нейрона прерываются в ядре латеральной петли или переключаются на III нейрон в медиальном коленчатом теле. Эти волокна III нейрона латеральной петли, пройдя мимо медиального коленчатого тела, заканчиваются в нижнем двухолмии среднего мозга, где формируется tr.tectospinalis. Те волокна латеральной петли относящиеся к нейронам верхней оливы, из моста проникают в верхние ножки мозжечка и затем достигают его ядер, а другая часть аксонов верхней оливы направляется к мотонейронам спинного мозга. Аксоны III нейрона, расположенные в медиальном коленчатом теле, формируют слуховое сияние, заканчивающееся в поперечной извилине Гешля височной доли.

Центральное представительство слухового анализатора.

У человека корковым слуховым центром является поперечная извилина Гешля, включая в себя в соответствии с цитоархитектоническим делением Бродмана поля 22, 41, 42, 44, 52 коры больших полушарий.

В заключении следует сказать, что как и в других корковых представительствах иных анализаторов в слуховой системе существует взаимосвязь между зонами слуховой области коры. Так каждая из зон слуховой области коры связана с другими зонами, организованными тонотопически. Кроме того, имеется гомотопическая организация связей между аналогичными зонами слуховой коры двух полушарий (существуют как внутрикорковые, так и межполушарные связи). При этом основная часть связей (94%) гомотопически оканчиваются на клетках III и IV слоёв и лишь незначительная часть – в V и VI слоях.

94. Вестибулярный периферический анализатор. В преддверии лабиринта имеются два перепончатых мешочка с находящимся в них отолитовым аппаратом. На внутренней поверхности мешочков имеются возвышения (пятна), выстланные нейроэпителием, состоящим из опорных и волосковых клеток. Волоски чувствительных клеток образуют сеть, которая покрыта желеобразной субстанцией, содержащей микроскопические кристаллики – отолиты. При прямолинейных движениях тела происходит смещение отолитов и механическое давление, что вызывает раздражение нейроэпителиальных клеток. Импульс передается преддверному узлу, а затем по вестибулярному нерву (VIII пара) в продолговатый мозг.

На внутренней поверхности ампул перепончатых протоков имеется выступ – ампулярный гребешок, состоящий из чувствительных клеток нейроэпителия и опорных клеток. Чувствительные волоски, склеивающиеся между собой, представлены в виде кисточки (купуля). Раздражение нейроэпителия происходит в результате перемещения эндолимфы при смещении тела под углом (угловые ускорения). Импульс передается волокнами вестибулярной ветви преддверно-улиткового нерва, которая заканчивается в ядрах продолговатого мозга. Эта вестибулярная зона связана с мозжечком, спинным мозгом, ядрами глазодвигательных центров, корой головного мозга.

В соответствии с ассоциативными связями вестибулярного анализатора различают вестибулярные реакции:вестибулосенсорные, вестибуловегетативные, вестибулосоматические(анимальные), вестибуломозжечковые, вестибулоспинальные, вестибулоглазодвигательные.

95.Проводящий путь вестибулярного (статокинетического) анализатора обеспечивает проведение нервных импульсов от волосковых сенсорных клеток ампулярных гребешков (ампулы полукружных протоков) и пятен (эллиптического и сферического мешочков) в корковые центры полушарий большого мозга.

Тела первых нейронов статокинетического анализатора лежат в преддверном узле, находящемся на дне внутреннего слухового прохода. Периферические отростки псевдоуниполярных клеток преддверного узла заканчиваются на волосковых сенсорных клетках ампулярных гребешков и пятен.

Центральные отростки псевдоуниполярных клеток в виде преддверной части преддверно-улиткового нерва вместе с улитковой частью через внутреннее слуховое отверстие вступают в полость черепа, а затем в мозг к вестибулярным ядрам лежащим в области вестибулярного поля, area vesribularis ромбовидной ямки

Восходящая часть волокон заканчивается на клетках верхнего вестибулярного ядра (Бехтерева*) Волокна составляющие нисходящую часть, заканчиваются в медиальном (Швальбе**), латеральном (Дейтерса***) и нижнем Роллера****) вестибулярных ядpax

Аксоны клеток вестибулярных ядер (II нейроны) образуют ряд пучков, которые идут к мозжечку, к ядрам нервов глазных мышц ядрам вегетативных центров, коре головного мозга, к спинному мозгу

Часть аксонов клеток латерального и верхнего вестибулярного ядра в виде преддверно-спинномозгового пути направляется в спинной моя располагаясь по периферии на границе переднего и боковою канатиков и заканчивается посегментно на двигательных анимальных клетках передних рогов, осуществляя проведение вестибулярных импульсов на мышцы шеи туловища и конечностей, обеспечивая поддержание равновесия тела

Часть аксонов нейронов латерального вестибулярного ядpa направляется в медиальный продольный пучок своей и противоположной стороны, обеспечивая связь органа равновесия через латеральное ядро с ядрами черепных нервов (III, IV, VI нар), иннервирующих мышцы глазного яблока что позволяет сохранить направление взгляда, несмотря на изменения положения головы. Поддержание равновесия тела в значительной степени зависит от согласованных движений глазных яблок и головы

Аксоны клеток вестибулярных ядер образуют связи с нейронами ретикулярной формации мозгового ствола и с ядрами покрышки среднего мозга

Появление вегетативных реакций (урежение пульса, падение артериального давления, тошнота, рвота, побледнение лица, усиление перистальтики желудочно-кишечного тракта и т.д.) в ответ на чрезмерное раздражение вестибулярного аппарата можно объяснить наличием связей вестибулярных ядер через ретикулярную формацию с ядрами блуждающего и языкоглоточного нервов

Сознательное определение положения головы достигается наличием связей вестибулярных ядер с корой полушарий большою мозга При этом аксоны клеток вестибулярных ядер переходят на противоположную сторону и направляются в составе медиальной петли к латеральному ядру таламуса, где переключаются на III нейроны

Аксоны III нейронов проходят через заднюю часть задней ножки внутренней капсулы и достигают коркового ядра стато-кинетического анализатора, которое рассеяно в коре верхней височной и постцентральной извилин, а также в верхней теменной дольке полушарий большого мозга

96. Инородные тела в наружном слуховом проходе чаще всего встречаются у детей, когда во время игры они заталкивают себе в ухо различные мелкие предметы (пуговицы, шарики, камушки, горошины, фасоль, бумагу и т.д.). Однако и у взрослых нередко обнаруживают инородные тела в наружном слуховом проходе. Ими могут быть обломки спичек, кусочки ваты, застревающие в слуховом проходе в момент очистки уха от серы, воды, насекомые и т.д.

Клиническая картина зависит от величины и характера инородных тел наружного уха. Так, инородные тела с гладкой поверхностью обычно не травмируют кожу наружного слухового прохода и длительное время могут не вызывать неприятных ощущений. Все другие предметы довольно часто приводят к реактивному воспалению кожи наружного слухового прохода с образованием раневой или язвенной поверхности. Набухшие от влаги, покрытые ушной серой инородные тела (вата, горошина, фасоль и т.д.) могут привести к закупорке слухового прохода. Следует иметь в виду, что одним из симптомов инородного тела уха является снижение слуха по типу нарушения звукопроведения. Оно возникает в результате полной закупорки слухового прохода. Ряд инородных тел (горох, семечки) способны в условиях влажности и тепла набухать, поэтому их удаляют после вливания веществ, способствующих их сморщиванию. Насекомые, попавшие в ухо, в момент движений вызывают неприятные, иногда мучительные ощущения.

Диагностика. Распознавание инородных тел обычно не представляет трудностей. Крупные инородные тела задерживаются в хрящевой части слухового прохода, а мелкие могут проникать в глубь костного отдела. Они хорошо видны при отоскопии. Таким образом, диагноз инородного тела наружного слухового прохода должен и может быть поставлен при отоскопии.В тех случаях, когда при неудачных или неумелых попытках удаления инородного тела, предпринятых ранее, возникло воспаление с инфильтрацией стенок наружного слухового прохода, диагностика становится затрудненной. В таких случаях при подозрении на инородное тело показан кратковременный наркоз, во время которого возможны как отоскопия, так и удаление инородного тела. Для обнаружения металлических инородных тел прибегают к рентгенографии.

Лечение. После определения величины, формы и характера инородного тела, наличия или отсутствия какого-либо осложнения выбирают метод его удаления. Наиболее безопасным методом удаления неосложненных инородных тел является вымывание их теплой водой из шприца типа Жане емкостью 100- 150 мл, которое производят так же, как и удаление серной пробки.
При попытке удаления пинцетом или щипцами инородное тело может выскользнуть и проникнуть из хрящевого отдела в костный отдел слухового прохода, а иногда даже через барабанную перепонку в среднее ухо. В этих случаях извлечение инородного тела становится более трудным и требует соблюдения большой осторожности и хорошей фиксации головы больного, необходим кратковременный наркоз. Крючок зонда обязательно под контролем зрения проводят за инородное тело и вытягивают его. Осложнением инструментального удаления инородного тела могут быть разрыв барабанной перепонки, вывихивание слуховых косточек и т.д. Набухшие инородные тела (горох, бобы, фасоль и т.д.) должны быть предварительно обезвожены вливанием 70 % спирта в слуховой проход в течение 2-3 дней, в результате чего они сморщиваются и удаляются без особого труда промыванием.
Насекомых при попадании в ухо умерщвляют вливанием в слуховой проход нескольких капель чистого спирта или подогретого жидкого масла, а затем удаляют промыванием.
В тех случаях, когда инородное тело вклинилось в костном отделе и повлекло за собой резкое воспаление тканей слухового прохода или привело к травме барабанной перепонки, прибегают к оперативному вмешательству под наркозом. Производят разрез мягких тканей позади ушной раковины, обнажают и разрезают заднюю стенку кожного слухового прохода и удаляют инородное тело. Иногда следует хирургическим путем расширить просвет костного отдела за счет удаления части задней его стенки.

Первый нейрон про­водящих путей слухового анализатора - упомянутые выше бипо­лярные клетки. Их аксоны образуют улитковый нерв, волокна ко­торого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела,

Рис. 5. Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где " расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (ниж­няя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.

главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5).

Помимо основного, проводящего пути, связывающего перифери­ческий отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуще­ствляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм ко­торого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Корковый отдел слухового анализатора.

У человека ядро кор­кового отдела слухового анализатора расположено ^в височной, области коры больших, полушарий. В той части поверхности височ­ной" области, которая представляет собой нижнюю стенку попереч­ной, или сильвиевой, щели, расположено поле 41. К нему, а возмож­но и к соседнему полк» 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при дву­стороннем разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу­шарием, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слу­хового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осу­ществляются корковые двигательные рефлексы на звуковые раздра­жители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.). Анализ и синтез звуковых раздражении. Анализ звуковых раздражений начинается в периферическом отделе слухового анализа­тора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражении, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспри­нимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными кле­точными группами, которые повторно приходил.i в состояние возбуждения пэд влиянием опргделеннэго звукового раздражения или комплекса последовательных звуковых раздражении, устанав­ливаются все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражи­телей, действуюдих на другие анализаторы. Так образуются все новые и новыэ условные связи, обогащзюд ie анализ и синтез звуко­вых раздражении.

В основе анализа и синтеза звуковых речевых раздражении ле­жит установление условных связей между очагами возбуждения. которые возникают под влиянием непосредственных раздражителей, действуюдих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обэзначаюдими эти раздражители. Так называемый слуховой центр речи, т. е. тот учас­ток слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражении, иными словами, с пониманием слышимой речи, расположен в основном в левом полу­шарии и занимает задний конец поля и прилегающий участок поля.

Факторы, определяющие чувствительность слухового анализатора.

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 40ЭЭ в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 ООЭ раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низ­ким же (до 1000 колебаний в секунду) остается почти неизмен­ной вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение гром­кости снижается сначала быстро, а потом все более медленно. Од­новременно, хотя и в меньшей степени, понижается чувствитель­ность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звуча­ния вследствие адаптации к тишине уже через 10-15 секунд вос­станавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анали­затора, а именно от изменения как усиливающей функции звуко­проводящего аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствитель­ности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в резуль­тате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов. Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, воз­никающий в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

5. Проводящий путь слухового анализатора (tr. n. cochlearis) (рис. 500). Слуховой анализатор осуществляет восприятие звуков, их анализ и синтез. Первый нейрон находится в спиральном узле (gangl. spirale), расположенном в основании полого улиткового веретена. Дендриты чувствительных клеток спирального узла проходят по каналам костной спиральной пластинки к спиральному органу и оканчиваются у наружных волосковых клеток. Аксоны спирального узла составляют слуховой нерв, вступающий в области мостомозжечкового угла в ствол мозга, где и заканчиваются синапсами с клетками дорсального (nucl. dorsalis) и вентрального (nucl. ventralis) ядер.

Аксоны II нейронов от клеток дорсального ядра образуют мозговые полоски (striae medullares ventriculi quarti), находящиеся в ромбовидной ямке на границе моста и продолговатого мозга. Большая часть мозговой полоски переходит на противоположную сторону и около средней линии погружается в вещество мозга, подключаясь к латеральной петле (lemniscus lateralis); меньшая часть мозговой полоски присоединяется к латеральной петле своей же стороны.

Аксоны II нейронов от клеток вентрального ядра участвуют в образовании трапециевидного тела (corpus trapezoideum). Большая часть аксонов переходит на противоположную сторону, переключаясь в верхней оливе и ядрах трапециевидного тела. Другая, меньшая, часть волокон оканчивается на своей же стороне. Аксоны ядер верхней оливы и трапециевидного тела (III нейрон) участвуют в образовании латеральной петли, в которой имеются волокна II и III нейронов. Часть волокон II нейрона прерывается в ядре латеральной петли (nucl. lemnisci proprius lateralis). Волокна II нейрона латеральной петли переключаются на III нейрон в медиальном коленчатом теле (corpus geniculatum mediale). Волокна III нейрона латеральной петли, пройдя мимо медиального коленчатого тела, заканчиваются в нижнем двухолмии, где формируется tr. tectospinalis. Те волокна латеральной петли, которые относятся к нейронам верхней оливы, из моста проникают в верхние ножки мозжечка и затем достигают его ядер, а другая часть аксонов верхней оливы направляется к мотонейронам спинного мозга и далее к поперечнополосатым мышцам.

Аксоны III нейрона, расположенные в медиальном коленчатом теле, пройдя через заднюю часть задней ножки внутренней капсулы, формируют слуховое сияние, которое заканчивается в поперечной извилине Гешля височной доли (поля 41, 42, 20, 21, 22). Низкие звуки воспринимаются клетками передних отделов верхней височной извилины, а высокие звуки - в ее задних отделах. Нижнее двухолмие является рефлекторным двигательным центром, через который подключается tr. tectospinalis. Благодаря этому при раздражении слухового анализатора рефлекторно подключается спинной мозг для выполнения автоматических движений, чему способствует и подключение верхней оливы с мозжечком; подключается также медиальный продольный пучок (fasc. longitudinalis medialis), объединяющий функции двигательных ядер черепных нервов.

500. Схема пути слухового анализатора (по Сентаготаи).
1 - височная доля; 2 - средний мозг; 3 - перешеек ромбовидного мозга; 4 - продолговатый мозг; 5 - улитка; 6 - вентральное слуховое ядро; 7 - дорсальное слуховое ядро; 8 - слуховые полоски; 9 - оливо-слуховые волокна; 10 - верхняя олива: 11 - ядра трапециевидного тела; 12 - трапециевидное тело; 13 - пирамида; 14 - латеральная петля; 15 - ядро латеральной петли; 16 - треугольник латеральной петли; 17 - нижнее двухолмие; 18 - латеральное коленчатое тело; 19 - корковый центр слуха.