Среднее ухо. Анатомия, физиология

Более точные результаты дает исследование слуховой функции камертонами . Для практических целей достаточно иметь 2 камертона: один-в 128 колебаний в секунду, другой - в 1024-2048 колебаний в секунду. Для более точного анализа слуховой функции необходимо иметь в своем распоряжении набор камертонов и свисток Гальтона.

При помощи камертонов определяется, как и при помощи речи воздушная проводимость звука. Для этого перед ухом больного держат звучащий камертон и определяют количество секунд, в течение которых больной слышит этот звук. Острота слуха определяется дробью, где числителем служит число секунд слышимости больным, а знаменателем - продолжительность в секундах нормальной слышимости для данного камертона.

Исследование костной проводимости , имеющее большое значение для дифференциальной диагностики заболевания слухового аппарата, производится при помощи камертона в 128 колебаний в секунду. Если поставить на темя больного ножку звучащего камертона, то при здоровых ушах звук ощущается в голове (опыт Вебера). В случае нарушения звукопроводящего аппарата одной стороны (при всех заболеваниях среднего уха) звук камертона лучше слышен в больном ухе (латерализация звука).

Это одностороннее усиление звука через кость объясняется затруднением истечения звуковых волн из лабиринта вследствие наличия препятствия в среднем ухе. Такой результат опыта Вебера наблюдается лишь при здоровом внутреннем ухе. В противном случае (поражение лабиринта и слухового нерва) звук камертона, стоящего на темени, будет лучше слышен в здоровом ухе, а при двухстороннем поражении - в менее пораженном.

Таким образом, опыт Вебера во многих случаях даст возможность отличить заболевание среднего уха от внутреннего, а иногда и отметить начало перехода процесса среднего уха на лабиринт. За последнее говорит неожиданный перенос латерализации звука с больной стороны на здоровую.

Очень важные указания дает сравнительная оценка продолжительности восприятия звука через кость и воздух, что составляет сущность опыта Ринне. Это исследование производится следующим образом. Ножка звучащего камертона (128 колебаний в секунду) ставится на сосцевидный отросток исследуемого уха. Когда больной перестает слышать звук камертона, его отнимают от кости и приближают к слуховому проходу.

Нормальное ухо воспринимает еще некоторое время звучание камертона через воздух, т. е. воздушная проводимость больше костной (по ожительный Ринне). Если больной не слышит звука через слуховой проход, значит - костная проводимость больше воздушной (отрицательный Ринне).

Это исследование имеет большое значение для дифференциальной диагностики заболеваний среднего и внутреннего уха. Положительный опыт Ринне, при наличии понижения слуха, говорит о локализации процесса во внутреннем ухе. Если же костная проводимость больше воздушной (отрицательный Ринне), то это служит доказательством поражения звукопроводящего аппарата. При комбинированном или двухстороннем заболевании диагностика локализации процесса иногда встречает очень большие трудности, и в таких случаях значение опытов Вебера и Ринне значительно уменьшается.

Сегодня мы разбираемся, как расшифровать аудиограмму. В этом нам помогает Светлана Леонидовна Коваленко — врач высшей квалификационной категории, главный детский сурдолог-оториноларинголог Краснодара, кандидат медицинских наук .

Краткое изложение

Статья получилось большой и подробной — чтобы понять, как расшифровать аудиограмму, надо сначала познакомиться с основными терминами аудиометрии и разобрать примеры. Если у вас нет времени долго читать и разбираться в деталях, в карточке ниже — краткое изложение статьи.

Аудиограмма — график слуховых ощущений пациента. Она помогает диагностировать нарушения слуха. На аудиограмме две оси: горизонтальная — частота (количество звуковых колебаний в секунду, выражается в герцах) и вертикальная — интенсивность звука (относительная величина, выражается в децибелах). На аудиограмме отмечается костная проводимость (звук, который в виде вибраций доходит до внутреннего уха через кости черепа) и воздушная проводимость (звук, который достигает внутреннего уха обычным путём — через наружное и среднее ухо).

При аудиометрии пациенту подают сигнал разной частоты и интенсивности и отмечают точками величину минимального звука, который слышат пациент. Каждая точка показывает минимальную интенсивность звука, при которой пациент слышит на конкретной частоте. Соединив точки, получаем график, а точнее, два — один для костного звукопроведения, другой — для воздушного.

Норма слуха — когда графики лежат в диапазоне от 0 до 25 дБ. Разница между графиком костного и воздушного звукопроведения называется костно-воздушным интервалом. Если график костного звукопроведения в норме, а график воздушного лежит ниже нормы (присутстувет костно-воздушный интервал), это показатель кондуктивной тугоухости. Если график костного звукопроведения повторяет график воздушного, и оба лежат ниже нормального диапазона, это говорит о сенсоневральной тугоухости. Если чётко определяется костно-воздушный интервал, и при этом оба графика показывают нарушения, значит, тугоухость смешанная.

Основные понятия аудиометрии

Чтобы понять, как расшифровать аудиограмму, сначала остановимся на некоторых терминах и самой методике аудиометрии.

У звука две основные физические характеристики: интенсивность и частота.

Интенсивность звука определяется силой звукового давления, которое у человека весьма вариабельно. Поэтому для удобства принято пользоваться относительными величинами, такими как децибелы (дБ) — это десятичная шкала логарифмов.

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (Гц). Условно диапазон звуковых частот делят на низкие — ниже 500Гц, средние (речевые) 500−4000Гц и высокие — 4000Гц и выше.

Аудиометрия — это измерение остроты слуха. Эта методика субъективна и требует обратной связи с пациентом. Исследующий (тот, кто проводит исследование) при помощи аудиометра подаёт сигнал, а исследуемый (слух которого исследуют) даёт знать, слышит он этот звук или нет. Чаще всего для этого он нажимает на кнопку, реже — поднимает руку или кивает, а дети складывают игрушки в корзину.

Существуют различные виды аудиометрии: тональная пороговая, надпороговая и речевая. На практике наиболее часто применяется тональная пороговая аудиометрия, которая определяет минимальный порог слуха (самый тихий звук, который слышит человек, измеряемый в децибелах (дБ)) на различных частотах (как правило, в диапазоне 125Гц — 8000 Гц, реже до 12 500 и даже до 20 000 Гц). Эти данные отмечаются на специальном бланке.

Аудиограмма — график слуховых ощущений пациента. Эти ощущения могут зависеть как от самого человека, его общего состояния, артериального и внутричерепного давления, настроения и т. д. , так и от внешних фактороватмосферных явлений, шума в помещении, отвлекающих моментов и т. д.

Как строится график аудиограммы

Для каждого уха раздельно измеряют воздушную проводимость (через наушники) и костную проводимость (через костный вибратор, который располагают позади уха).

Воздушная проводимость — это непосредственно слух пациента, а костная проводимость — слух человека, исключая звукопроводящую систему (наружное и среднее ухо), её ещё называют запасом улитки (внутреннего уха).

Костная проводимость обусловлена тем, что кости черепа улавливают звуковые вибрации, которые поступают ко внутреннему уху. Таким образом, если имеется препятствие в наружном и среднем ухе (любые патологические состояния), то звуковая волна достигает улитки благодаря костной проводимости.

Бланк аудиограммы

На бланке аудиограммы чаще всего правое и левое ухо изображены раздельно и подписаны (чаще всего правое ухо слева, а левое ухо справа), как на рисунках 2 и 3. Иногда оба уха отмечаются на одном бланке, их различают либо цветом (правое ухо всегда красным, а левое — синим), либо символами (правое кругом или квадратом (0---0---0), а левое — крестом (х---х---х)). Воздушную проводимость всегда отмечают сплошной линией, а костную — прерывистой.

По вертикали отмечают уровень слуха (интенсивность стимула) в децибелах (дБ) с шагом в 5 или 10 дБ, сверху вниз, начиная от −5 или −10, а заканчивая 100 дБ, реже 110 дБ, 120 дБ. По горизонтали отмечаются частоты, слева направо, начиная от 125 Гц, далее 250 Гц, 500Гц, 1000Гц (1кГц), 2000Гц (2кГц), 4000Гц (4кГц), 6000Гц (6кГц), 8000Гц (8кГц) и т. д. , могут быть некоторые вариации. На каждой частоте отмечается уровень слуха в децибелах, потом точки соединяют, получается график. Чем выше график, тем лучше слух.


Как расшифровать аудиограмму

При обследовании больного в первую очередь необходимо определить топику (уровень) поражения и степень слуховых нарушений. Правильно выполненная аудиометрия даёт ответ на оба этих вопроса.

Патология слуха может быть на уровне проведения звуковой волны (за этот механизм отвечает наружное и среднее ухо), такую тугоухость называют проводниковой или кондуктивной; на уровне внутреннего уха (рецепторный аппарат улитки), данная тугоухость является сенсоневральной (нейросенсорной), иногда бывает сочетанное поражение, такую тугоухость называют смешанной. Крайне редко встречаются нарушения на уровне слуховых проводящих путей и коры головного мозга, тогда говорят о ретрокохлеарной тугоухости.

Аудиограммы (графики) могут быть восходящими (чаще всего при кондуктивной тугоухости), нисходящими (чаще при сенсоневральной тугоухости), горизонтальными (плоскими), а также иной конфигурации. Пространство между графиком костной проводимости и графиком воздушной — это костно-воздушный интервал. По нему определяют, с каким видом тугоухости мы имеем дело: нейросенсорной, кондуктивной или смешанной.

Если график аудиограммы лежит в диапазоне от 0 до 25 дБ по всем исследуемым частотам, то считается, что у человека нормальный слух. Если график аудиограммы спускается ниже, то это патология. Тяжесть патологии определяется степенью тугоухости. Существуют различные расчёты степени тугоухости. Однако наиболее широкое распространение получила международная классификация тугоухости, по которой рассчитывается среднеарифметическая потеря слуха на 4 основных частотах (наиболее важных для восприятия речи): 500 Гц, 1000 Гц, 2000 Гц и 4000 Гц.

1 степень тугоухости — нарушение в пределах 26−40 дБ,
2 степень — нарушение в диапазоне 41−55 дБ,
3 степень — нарушение 56−70 дБ,
4 степень — 71−90 дБ и свыше 91 дБ — зона глухоты.

1 степень определяется как лёгкая, 2 — среднетяжёлая, 3 и 4 — тяжёлая, а глухота — крайне тяжёлая.

Если костное звукопроведение в норме (0−25дБ), а воздушное проведение нарушено, это показатель кондуктивной тугоухости . В случаях, когда нарушено и костное, и воздушное звукопроведение, но есть костно-воздушный интервал, у пациента смешанный тип тугоухости (нарушения и в среднем и во внутреннем ухе). Если костное звукопроведение повторяет воздушное, то это сенсоневральная тугоухость . Однако при определении костной звукопроводимости необходимо помнить, что низкие частоты (125Гц, 250Гц) дают эффект вибрации и исследуемый может принимать это ощущение за слуховое. Поэтому нужно критически относиться к костно-воздушному интервалу на данных частотах, особенно при тяжёлых степенях тугоухости (3−4 степени и глухоте).

Кондуктивная тугоухость редко бывает тяжелой степени, чаще 1−2 степень тугоухости. Исключения составляют хронические воспалительные заболевания среднего уха, после хирургических вмешательствах на среднем ухе и т. д. , врожденные аномалии развития наружного и среднего уха (микроотии, атрезии наружных слуховых проходов и т. д.), а также при отосклерозе.

Рисунок 1 — пример нормальной аудиограммы: воздушная и костная проводимость в пределах 25 дБ во всём диапазоне исследуемых частот с обеих сторон .

На рисунках 2 и 3 представлены типичные примеры кондуктивной тугоухости: костное звукопроведение в пределах нормы (0−25дБ), а воздушное нарушено, имеется костно-воздушный интервал.

Рис. 2. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Чтобы рассчитать степень тугоухости, складываем 4 величины — интенсивность звука на 500, 1000, 2000 и 4000 Гц и делим на 4, чтобы получить среднее арифметическое. Получаем справа: на 500Гц — 40дБ, 1000Гц — 40 дБ, 2000Гц — 40 дБ, 4000Гц — 45дБ, в сумме — 165 дБ. Делим на 4, равно 41,25 дБ. Согласно международной классификации, это 2 степень тугоухости. Определяем тугоухость слева: 500Гц — 40дБ, 1000Гц —— 40 дБ, 2000Гц — 40 дБ, 4000Гц — 30дБ = 150, разделив на 4, получаем 37,5 дБ, что соответствует 1 степени тугоухости. По данной аудиограмме можно сделать следующее заключение: двусторонняя кондуктивная тугоухость справа 2 степени, слева 1 степени.

Рис. 3. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Аналогичную операцию выполняем для рисунка 3. Степень тугоухости справа: 40+40+30+20=130; 130:4=32,5, т. е. 1 степень тугоухости. Слева соответственно: 45+45+40+20=150; 150:4=37,5, что также является 1 степенью. Таким образом, можно сделать следующее заключение: двусторонняя кондуктивная тугоухость 1 степени.

Примерами сенсоневральной тугоухости являются рисунки 4 и 5. На них видно, что костная проводимость повторяет воздушную. При этом на рисунке 4 слух на правом ухе в норме (в пределах 25 дБ), а слева имеется сенсоневральная тугоухость, с преимущественным поражением высоких частот.

Рис. 4. Аудиограмма пациента с сенсоневральной тугоухостью слева, правое ухо в норме .

Степень тугоухости рассчитываем для левого уха: 20+30+40+55=145; 145:4=36,25, что соответствует 1 степени тугоухости. Заключение: левосторонняя сенсоневральная тугоухость 1 степени.

Рис. 5. Аудиограмма пациента с двусторонней сенсоневральной тугоухостью .

Для данной аудиограммы показательным является отсутствие костного проведения слева. Это объясняется ограниченностью приборов (максимальная интенсивность костного вибратора 45−70 дБ). Рассчитываем степень тугоухости: справа: 20+25+40+50=135; 135:4=33,75, что соответствует 1 степени тугоухости; слева — 90+90+95+100=375; 375:4=93,75, что соответствует глухоте. Заключение: двусторонняя сенсоневральная тугоухость справа 1 степени, слева глухота.

Аудиограмма при смешанной тугоухости отображена на рисунке 6.

Рисунок 6. Имеются нарушения как воздушного, так и костного звукопроведения. Чётко определяется костно-воздушный интервал .

Степень тугоухости рассчитываем согласно международной классификации, которая составляет для правого уха среднеарифметическое значение 31,25дБ, а для левого — 36,25дБ, что соответствует 1 степени тугоухости. Заключение: двусторонняя тугоухость 1 степени по смешанному типу.

Сделали аудиограмму. Что потом?

В заключении следует отметить, что аудиометрия не является единственным методом исследования слуха. Как правило, для установления окончательного диагноза необходимо комплексное аудиологическое исследование, которое помимо аудиометрии включает акустическую импедансометрию, отоакустическую эмиссию, слуховые вызванные потенциалы, исследование слуха при помощи шёпотной и разговорной речи. Также в ряде случаев аудиологическое обследование необходимо дополнять другими методами исследования, а также привлечением специалистов смежных специальностей.

После диагностики слуховых нарушений необходимо решать вопросы лечения, профилактики и реабилитации больных с тугоухостью.

Наиболее перспективно лечение при кондуктивной тугоухости. Выбор направления лечения: медикаментозного, физиотерапевтического или хирургического определяется лечащим врачом. В случае сенсоневральной тугоухости улучшение или восстановление слуха возможно только при острой её форме (при продолжительности тугоухости не более 1 месяца).

В случаях стойкой необратимой потери слуха врач определяет методы реабилитации: слухопротезирование или кохлеарную имплантацию. Такие пациенты должны не реже 2 раз в год наблюдаться у сурдолога, а с целью профилактики дальнейшего прогрессирования тугоухости получать курсы медикаментозного лечения.

Слуховое восприятие обеспечивается с помощью воздушной и костной проводимости. Звуковые волны, распространяясь по воздуху (воздушная проводимость), достигают уха, проникают в наружный слуховой проход и вызывают колебания барабанной перепонки, которая приводит в движение молоточек, наковальню и стремя. Движения основания стремени вызывают изменения давления жидкости во внутреннем ухе, приводя к распространению волны на базальную мембрану улитки. Слуховые волоски волосковых клеток спирального органа, располагающегося на базальной мембране, внедрены в покровную мембрану и колеблются под влиянием передвигающейся волны. При каждом колебании волны базальная мембрана смещается, максимум этого смещения определяется частотой раздражающего тона. Высокочастотные тона вызывают максимальное смещение базальной мембраны у основания улитки. При уменьшении частоты колебаний точка максимального смещения сдвигается к верхушке улитки. О костной проводимости слуховые ощущения говорят в тех случаях, когда источник звуков, контактируя с костями черепа, вызывает их вибрацию, в том числе и в височной кости, что вызывает колебания волн в области базальной мембраны.

Колебания слуховых волосков волосковых сенсорных клеток вызывают некоторые биоэлектрические явления. Улитковые микрофонные, переменные электрические колебания, точно передающие частоту и интенсивность раздражающего тона, возникают примерно на 0,5 мс раньше потенциала действия VIII черепного нерва. Наличие данного латентного периода свидетельствует о том, что в месте соприкосновения волосковых клеток и дендритов улиткового нерва выделяется какой-то, пока не идентифицированный, нейротрансмиттер. Все нейроны улиткового нерва активируются при наличии раздражении определенной частоты и интенсивности. Этот феномен характерной или наилучшей частоты отмечают во всех отделах слухового пути: в верхних оливах, латеральной петле, нижних бугорках крыши среднего мозга, медиальном коленчатом теле и слуховой коре. При звуках низкой частоты отдельные слуховые волокна реагируют более или менее синхронно. При высоких частотах замыкание фазы происходит таким образом, что нейроны изменяются в ответ на отдельные фазы цикла звуковой волны. Интенсивность определяется уровнем активности отдельных нейронов, количеством активных нейронов и особенностью активируемых нейронов.

Нарушения слуха

Потерю слуха могут вызывать поражения наружного слухового прохода, среднего уха, внутреннего уха и проводящих путей слухового анализатора. В случае поражения наружного слухового прохода и среднего уха возникает кондуктивная тугоухость, при поражениях внутреннего уха или улиткового нерва - нейросенсорная тугоухость.

Кондуктивная тугоухость возникает в результате закупорки наружного слухового прохода ушной серой, инородными телами, при набухании выстилки прохода, стенозах и новообразованиях наружного слухового прохода. К развитию кондуктивной тугоухости приводят также перфорации барабанной перепонки, например при среднем отите, нарушения целостности слуховых косточек, например при некрозе длинной ножки наковальни вследствие травмы или инфекционных процессов, фиксация слуховых косточек при отосклерозе, а также скопление жидкости в среднем ухе, рубцы и опухоли среднего уха. Нейросенсорная тугоухость развивается в результате повреждений волосковых клеток кортиева органа, обусловленных шумовой травмой, вирусной инфекцией, применением ототоксических препаратов, переломами височной кости, менингитом, отосклерозом улитки, болезнью Меньера и возрастными изменениями. К развитию нейросенсорной тугоухости приводят также опухоли мостомозжечкового угла (например, акустическая невринома), опухолевые, сосудистые, демиелинизирующие и дегенеративные поражения центральных отделов слухового анализатора.

Методы исследования слуха

При осмотре обращают внимание на состояние наружного слухового прохода и барабанной перепонки. Тщательно осматривают полость носа, носоглотку, верхние дыхательные пути и оценивают функции черепных нервов. Кондуктивную и нейросенсорную тугоухость следует дифференцировать путем сравнения порогов слуха при воздушной и костной проводимости. Воздушную проводимость исследуют при передаче раздражении по воздуху. Адекватная воздушная проводимость обеспечивается проходимостью наружного слухового прохода, целостностью среднего и внутреннего уха, вестибулокохлеарного нерва и центральных отделов слухового анализатора. Для исследования костной проводимости к голове больного прикладывают осциллятор или камертон. В случае костной проводимости звуковые волны обходят наружный слуховой проход и среднее ухо. Таким образом, костная проводимость отражает целостность внутреннего уха, улиткового нерва и центральных проводящих путей слухового анализатора. Если имеется повышение порогов воздушной проводимости при нормальных пороговых значениях костной проводимости, то поражение, вызвавшее тугоухость, локализуется в наружном слуховом проходе или среднем ухе. Если имеется повышение порогов чувствительности воздушной и костной проводимости, то очаг поражения находится во внутреннем ухе, улитковом нерве или центральных отделах слухового анализатора. Иногда кондуктивная и нейросенсорная тугоухость наблюдаются одновременно, в этом случае будут повышены пороги как воздушной, так и костной проводимости, но пороги воздушной проводимости будут значительно выше, чем костной.

При дифференциальной диагностике кондуктивной и нейросенсорной тугоухости используют пробы Вебера и Ринне. Проба Вебера заключается в том, что ножку камертона устанавливают на голове больного по средней линии и спрашивают его, слышит ли он звучание камертона равномерно с обеих сторон, или же на одной из сторон звук воспринимается сильнее. При односторонней кондуктивной тугоухости звук сильнее воспринимается на стороне поражения. При односторонней нейросенсорной тугоухости звук сильнее воспринимается на здоровой стороне. Пробой Ринне сравнивают восприятие звука посредством воздушной и костной проводимости. Бранши камертона подносят к слуховому проходу, а затем ножку звучащего камертона устанавливают на сосцевидном отростке. Больного просят определить, в каком случае звук передается сильнее, посредством костной или воздушной проводимости. В норме звучание ощущается громче при воздушной проводимости, чем при костной. При кондуктивной тугоухости лучше воспринимается звучание камертона, установленного на сосцевидном отростке; при нейросенсорной тугоухости нарушены оба вида проводимости, однако в ходе исследования воздушной проводимости звук воспринимается громче, чем в норме. Результаты проб Вебера и Ринне вместе позволяют сделать вывод о наличии кондуктивной или нейросенсорной тугоухости.

Количественную оценку тугоухости проводят с помощью аудиометра - электрического прибора, позволяющего исследовать воздушную и костную проводимость с использованием звуковых сигналов различной частоты и интенсивности. Исследования проводят в специальной комнате со звукоизоляционным покрытием. Для того чтобы ответы больного основывались только на ощущениях со стороны исследуемого уха, другое ухо экранируют с помощью широкоспектральных шумов. Используют частоты от 250 до 8000 Гц. Степень изменения слуховой чувствительности выражают в децибелах. Децибел (дБ) равен десятикратному значению десятичного логарифма отношения силы звука, необходимой для достижения порога у данного больного, к силе звука, необходимой для достижения слухового порога у здорового человека. Аудиограмма - это кривая, отображающая отклонения слуховых порогов от нормальных (в дБ) для разных звуковых частот.

Характер аудиограммы при тугоухости часто имеет диагностическое значение. При кондуктивной тугоухости обычно выявляются довольно равномерное повышение порогов для всех частот. Для кондуктивной тугоухости с массивным объемным воздействием, как это бывает при наличии транссудата в среднем ухе, характерно значительное повышение порогов проводимости для высоких частот. В случае кондуктивной тугоухости, обусловленной тугоподвижностью проводящих образований среднего уха, например, вследствие фиксации основания стремени на ранней стадии отосклероза, отмечают более выраженное повышение порогов проводимости низких частот. При нейросенсорной тугоухости в целом имеется тенденция к более выраженному повышению порогов воздушной проводимости высоких частот. Исключение составляет тугоухость вследствие шумовой травмы, при которой отмечают наибольшее снижение слуха на частоту 4000 Гц, а также болезнь Меньера, особенно на ранней стадии, когда более значительно повышаются пороги проводимости низких частот.

Дополнительные данные позволяет получить речевая аудиометрия. Этим методом с использованием двусложных слов с равномерным ударением на каждом слоге исследуют спондеический порог, т. е. интенсивность звука, при которой речь становится разборчивой. Интенсивность звука, при которой больной может понять и повторигь 50% слов, называют спондеическим порогом, он обычно приближается к среднему порогу речевых частот (500, 1000, 2000 Гц). После определения спондеического порога исследуют дискриминационную способность с помощью односложных слов с громкостью звука на 25-40 дБ выше спондеического порога. Люди с нормальным слухом могут правильно повторить от 90 до 100% слов. Больные с кондуктивной тугоухостью также хорошо выполняют дискриминационную пробу. Больные с нейросенсорной тугоухостью не способны различать слова вследствие повреждения периферического отдела слухового анализатора на уровне внутреннего уха или улиткового нерва. При поражении внутреннего уха дискриминационная способность бывает снижена и составляет обычно 50-80% нормы, тогда как при поражении улиткового нерва способность различать слова значительно ухудшается и составляет от 0 до 50%.

Исследование вестибулоокулярных рефлексов (нистагм, проба кукольных глаз, калорическая проба.

Дуга вестибулоокулярных рефлексов: вестибулярный аппарат – вестибулярные ядра (VIII пара) – ядра нервов глазодвигательных мышц (III, IV, VI пары). Нистагм – медленное движение глаз в одну сторону, сменяющееся быстрым скачком в обратную сторону. Это позволяет удерживать взор в постоянном направлении во время вращения головы. Медленная фаза нистагма представляет собой стволовой вестибуло-окулярный рефлекс; быстрая фаза –обусловлена командами из префронтальной коры. Проба кукольных глаз – один из способов проверки вестибулоокулярных рефлексов. Осуществляют медленный поворот головы в горизонтальной, затем в вертикальной плоскости. В норме глаза двигаются в направлении, противоположном повороту головы. Движения глаз рефлекторные, регулируются стволовыми центрами и обусловлены импульсацией от вестибулярного аппарата и проприорецепторов шеи. При сохраненном сознании эти рефлексы подавляются корой больших полушарий за счёт фиксации взора, и появляются лишь при отсутствии корковых влияний. Так, например, содружественное движение глаз в полном объёме при пробе кукольных глаз позволяет утверждать, что кома не связана с повреждением ствола мозга. Калорическая проба (холодовая проба)

Орошение наружного слухового прохода холодной водой вызывает движение эндолимфы. Если пути от лабиринта к ядру глазодвигательного нерва в среднем мозге не повреждены, то глазные яблоки быстро смещаются в сторону раздражаемого уха и остаются в этом положении 30-120 сек. При сохранности полушарий головного мозга, например, при истерической коме, во время холодовой пробы возникает нистагм. Отсутствие нистагма свидетельствует о поражении или угнетении полушарий головного мозга.

Путь воздушной проводимости звука: наружный слуховой проход – среднее ухо – внутреннее ухо (Кортиев орган) – слуховой нерв.

Путь костной проводимости звука: кости черепа – внутреннее ухо (Кортиев орган) – слуховой нерв.

(а) Проба Вебера. Одна из проб для сравнения восприятия звука через воздух и черепную коробку. При патологических процессах в среднем ухе звучащий камертон, поставленный на середину темени, воспринимается значительно сильнее на стороне поражения. При этом у пациента создаётся впечатление, что источник звука расположен сбоку, на стороне больного уха.

При поражения внутреннего уха или слухового нерва звук воспринимается лучше на здоровой стороне. У пациента создаётся впечатление, что источник звука расположен сбоку, на стороне здорового уха.

(б) Проба Ринне. Одна из проб для сравнения восприятия звука через воздух и черепную коробку. Ножку звучащего камертона ставят на сосцевидный отросток. Когда восприятие звука путём костной проводимости оканчивается, камертон подносят к уху пациента и отмечают продолжение восприятия звука теперь уже за счёт воздушной проводимости звука (положительный симптом Ринне). При поражении звукопроводящего аппарата (барабанная перепонка, среднее ухо, слуховые косточки) звук камертона ухом через воздух не воспринимается (отрицательный симптом Ринне).



Костная проводимость звука Воздушная проводимость звука

1. Периферический отдел – это рецепторный аппарат со вставочными образованиями.

2. Проводниковый отдел: от рецепторов нервные импульсы передаются на 1-й нейрон – спиральный ганглий, который залегает в базальной мембране. Аксоны этих клеток идут в составе предверно - улиткового нерва (YIII пара) и заканчиваются синапсами на клетках 2-го нейрона, который залегает вы продолговатом мозге (дно 4-го желудочка мозга – ромбовилная ямка). Из продолговатого мозга аксоны 2-х нейронов идут в средний мозг (нижние бугры четверохолмия) и медиальное коленчатое тело. До коленчатого тела происходит перекрест части волокон. Часть информации дальше не идет, а замыкается на двигательном пути безусловных рефлексов слуховой системы (двигательные реакции на слуховые раздражения).

3-й нейрон находится в таламусе (замыкаются простейшие рефлексы, выделяется главное, группируется информация).

3. Корковый отдел слухового анализатора – кора височной доли больших полушарий. Поступившие нервные импульсы преобразуются в виде звуковых ощущений.

КОСТНАЯ И ВОЗДУШНАЯ ПРОВОДИМОСТЬ ЗВУКОВ. АУДИОМЕТРИЯ

Воздушная и костная проводимость

Барабанная перепонка включается в звуковые колебания и передает их энергию по цепи косточек среднего уха перилимфе вестибулярной лестницы. Звук, передаваемый по этому пути, распространяется в воздушной среде – это воздушная проводимость.

Ощущение звука возникает и тогда, когда колеблющийся предмет, например камертон, помещен непосредственно на череп; в этом случае основная часть энергии передается через кости черепа – это костная проводимость. Для возбуждения внутреннего уха необходимо движение жидкости внутреннего уха. Звук, передаваемый через кости, вызывает такое движение двумя путями:

1. Области сжатия и разрежения, проходящие по костям черепа, перемещают жидкость из объемистого вестибулярного лабиринта в улитку и обратно («компрессионная теория»).

2. Косточки среднего уха обладают некоторой массой, и поэтому колебания косточек из-за инерции задерживаются по сравнению с колебаниями костей черепа.



Тестирование нарушений слуха

Наиболее важным клиническим тестом является пороговая аудиометрия (рис. 32) .

1. Испытуемому через один телефонный наушник предъявляются различные тоны. Врач, начиная с некоторой интенсивности звука, которая определена как подпороговая, постепенно увеличивает звуковое давление до тех пор, пока испытуемый не сообщит, что он слышит звук. Это звуковое давление наносится на график. На аудиографических бланках уровень нормального слухового порога выделяется жирной чертой и помечается «О дБ». В противоположность графику на рис. 31 более высокие значения слухового порога наносятся ниже нулевой линии (что характеризует степень утраты слуха); таким образом, демонстрируется, насколько поро­говый уровень для данного больного (в дБ) отличается от нормального. Отметим, что в этом случае речь идет не об уровне звуко­вого давления, который измеряется в деци­белах УЗД. Когда определено, на сколько дБ слуховой порог у больного ниже нормы, говорят, что утрата слуха составляет столь­ко-то дБ. Например, если заткнуть пальца­ми оба уха, снижение слуха составит при­близительно 20 дБ (при выполнении этого эксперимента не следует, по возможности, создавать шум самими пальцами). С по­мощью телефонных наушников тестируется восприятие звука при воздушной проводимо­сти . Костная проводимость тестируется сходным образом, но вместо наушников ис­пользуется камертон, который помещают на сосцевидный отросток височной кости с проверяемой стороны, так что колебания распространяются через кости черепа. Срав­нивая пороговые кривые для костной и воз­душной проводимости, можно отличить глухоту, связанную с повреждением средне­го уха, от вызванной нарушениями внутрен­него уха.

ОПЫТЫ РИННЕ И ВЕБЕРА

2. С помощью камертонов (с частотой 256 Гц) нарушения проведения очень легко отличить от повреждения внутреннего уха или от ретрокохлеарных повреждений в случае, если известно, какое ухо повреждено.

А. Опыт Вебера.

Ножка звучащего камертона помещается по средней линии черепа; в этом случае больной с поражением внутреннего уха сообщает, что он слышит тон здоровым ухом; у больного с поражением среднего уха ощущение тона смещается на поврежденную сторону.

Существует простое объяснение:

В случае повреждения внутреннего уха: поврежденные рецепторы вызывают более слабое возбуждение в слуховом нерве, поэтому тон кажется более громким в здоровом ухе.

В случае поражения среднего уха: во-первых, пораженное ухо подвергается изменениям вследствие воспаления, при этом вес слуховых косточек увеличивается. Это улучшает условия возбуждения внутреннего уха за счет костной проводимости. Во-вторых, т.к. при нарушениях проведения меньше звуков достигают внутреннего уха и оно адаптируется к более низкому уровню шума, рецепторы становятся более чувствительными, чем на здоровой стороне.

Б. Тест Ринне.

Позволяет сравнить воздушную и костную проводимость в одном и том же ухе. Звучащий камертон помещают на сосцевидный отросток (костная проводимость) и держат там, пока больной не перестанет слышать звук, после этого переносят камертон непосредственно к наружному уху (воздушная проводимость). Люди с нормальным слухом и те, у кого нарушено восприятие. Снова слышат тон (тест Ринне положительный), а те, у кого нарушено проведение – не слышат (тест Ринне отрицательный).

46. ПАТОЛОГИЧЕСКИЕ НАРУШЕНИЯ СЛУХА И ИХ ОПРЕДЕЛЕНИЕ Глухота – частая патология. Причины ухудшения слуха:

1. Нарушение проведения звука. Повреждение среднего уха – аппарата проведения звука. Например, при воспалении слуховые косточки не передают нормального количества звуковой энергии на внутреннее ухо.

2. Нарушение восприятия звука (нейросенсорная утрата слуха). В этом случае повреждены волосковые рецепторы кортиева органа. В результате нарушается передача информации из улитки в ЦНС. Такое поражение может произойти при звуковой травме при действии звука высокой интенсивности (более 130 дБ) или при действии ототоксических веществ (происходит поражение ионного аппарата внутреннего уха) – это антибиотики, некоторые диуретики.

3. Ретрокохлеарные повреждения. При этом внутреннее и среднее ухо не повреждены. Поражены либо центральная часть первичных афферентных слуховых волокон, либо другие компоненты слухового тракта (например, при опухоли мозга).